YASKAWA # YASKAWA AC Drive GA700 High Performance Type 200 V CLASS, 0.4 to 110 kW 400 V CLASS, 0.4 to 630 kW # **Best Value for Your Applications** # Best Value for Your Applications Yaskawa Electric Corporation is here to provide "The Answers" for your company. Our number one priority at Yaskawa Electric Corporation is to always keep the customer's perspective in mind by leading the industry in meeting demands with uncompromising quality and trust. Our new GA700 carries on the proud tradition of our product concepts: Flexible, Easy, Sustainable. With a highly efficient, flexible motor control, powerful and extendable functionality along with a broad power range, the GA700 is the drive of choice for almost any task. By revolutionizing your facilities and machines, the GA700 will increase productivity, save energy efficiently, reduce total costs, with enhanced environmental compatibilities. #### ICONTENTS | Features | 4 | |--------------------------------|----| | Product Lineup | 14 | | Catalog Code / Model Number | 15 | | Basic Instructions | 16 | | Model Selection | 19 | | Standard Specifications | 20 | | Standard Connection Diagram | 24 | | Terminal Specifications | 28 | | Dimensions | 32 | | Fully-Enclosed Design | 36 | | Peripheral Devices and Options | 38 | | Application Notes | 62 | | Global Service Network | 71 | #### Are You Maximizing the Use of Your Machines? Yaskawa Electric Corporation has been developing motor controls for years, which will become the key to success and exceed all your expectations. #### **Powerful Starting Torque without Encoder** When using an PM motor, it is possible to produce 200% torque at zero speed without the need for an encoder. This will make the machine more compact and reduce component costs. When utilizing induction motors using the Advanced Open Loop Vector Control method, the tension control of the winder can be achieved without encoders, which reduces wiring and improves reliability. #### ■ Torque characteristics **Encoder** #### **Torque Control without Encoder** With the improved performance of Advanced Open Loop Vector Controls method, torque can be controlled without using encoders. Reliability can also be improved since encoders are not used **PG Option Card** Not needed **PG Cable** #### **EZ Open Loop Vector Control Tuning-less even for Synchronous Motors!** Yaskawa's NEW EZ Open Loop Vector Control can drive both synchronous motors and induction motors and eliminate complicated tuning processes. Simply input the information on the motor nameplate. EZ Open Loop Vector Control can reduce start-up time. With the new EZ Open Loop Vector control, the GA700 can run a variety of these motor types without comprehensive tuning.* * Refer to "The Fourth Energy Saving Choice" on page 5. #### **High-speed Operation** With significant improvement in basic performance, induction motors and synchronous motors can operate up to 590 Hz*. Machines can be made more compact as a result of making motors gear-less and smaller. * Varies with control modes. Applicable to PM Open Loop Control and #### Are You Having Trouble with Power Efficiency? Current trends include the use of drives for machines, the application of high-efficiency motors, and the use of regenerative energy. Now, you can achieve even better energy savings for drives with the use of new technologies that improve motor efficiency. # The First Energy Saving Choice: Using Drives Energy savings with the use of an drive to control the air flow of the fan with the damper. # The Second Energy Saving Choice: Applying High Efficiency Motors Energy savings with the application of a high-efficiency motor (IE3 / IE4). #### The Third Energy Saving Choice: Usage of Regenerative Energy Return the regenerative energy that has been wasted as heat in the braking resistor to the power supply for energy savings (when installed with the energy saving unit: D1000 or R1000). #### **Simulation of Energy Saving Effects** You can monitor the investment effectiveness of energy savings when using a drive for a fan/pump or when adopting the various power supply regeneration methods. * You can download Drive Select from Yaskawa's product and technical information website (http://www.e-mechatronics.com). # FLEXIBLE #### Do You Want to Reduce Costs? 8 To minimize initial investment, the functions of the peripheral devices are incorporated into the GA700. This eliminates the need for these devices, and saves space, wiring, and labor. #### **Built-in Power Supply for the Sensor** Separate power supply not required because the drive provides a 24 Vdc output (150 mA) for external sensors. # 24 Vdc Control Power Input Terminal Standard Equipped Backs up control power supply without the need for additional options. # Braking Transistor Built-in Eliminates the need for a separately mounted braking unit. Correspondence: 200 V-class up to 37 kW (ND) 400 V-class up to 75 kW (ND) #### **DC Reactor Built-in** A DC reactor minimizes harmonic distortion. (Corresponds to 200 V class/400 V class 22 kW (ND) or more) #### EMC Filter (C2, C3) Built-in* #### High Performance Control Even Without an Encoder #### **Horizontal Placement*** Choice of horizontal or vertical placement of the drive to save space (for up to 200 V class/400 V class 75 kW (HD)). Note: Adequate airflow must be provided and derating must be considered. * Under development # Control Panel Not Required for IP55 Compatible Lineup* Can be installed as a single unit because the protective structure is IP55 compatible. IP55: The IP Code in JIS must be "dust/jet-proof". * Factory option (under development) # Reduction in the Number of Peripheral Devices With the enhanced functions of the DriveWorksEZ programming tool, timers and relays are unnecessary. #### **Oscilloscope Function** With the improved oscilloscope function performance for the DriveWizard support tool, adjustments can be made without the need for external measuring instruments. #### Voltage/Current Switching Analog Output Conversion circuit is not required for the analog output voltage of 0 to 10 V and electric current of 4 to 20 mA. #### SIL3* Correspondence STO Standard Equipped Two contactors are no longer needed. * Safety performance measurement under IEC/ EN61508 #### **Gateway Connection System** A maximum of five drives can be controlled with one communication card by converting the industrial network protocol to RS-485. We recommend this system for fans, pumps, compressors and other devices that require multi-axis control. #### **Enhanced Communication Option Card** A variety of field networks, including MECHATROLINK-II, MECHATROLINK-III, PROFIBUS-DP, DeviceNet, CC-Link, CANopen, including Industrial Ethernet, such as EtherNet/IP, can be supported with the use of one communication option card. Note: Product names are registered trademarks of the respective owners. #### Monitor Output of Various Types of Data Various data can be monitored via a communications network. By constantly monitoring this data, you can visualize the factory. Values set to the parameters can be output as multi-function digital output. #### Flexibility Improvement of I/O The PG option cards and input/output option cards for the 1000 series can be used. DI-A3 input terminals that are conventionally used as digital frequency reference cards can also be used as multifunction input terminals. Do you want to customize your drive to get the best fit for you? # Equipped with Programming Tool DriveWorksEZ as Standard Drives can be easily customized to suit the needs of customers with a drag-and-drop operation using a PC. Special operations and new detection functions, such as compressor pressure sensor-less control, conveyor vibration detection, and diagnosis of abnormal symptoms, such as fan clogging detection, can be programmed. # Program Detection Function Ex.) Diagnosis of abnormal symptoms (machine torque pulsation detection) Operation example in the set section Fulley GA700 Motor Torque amplitude Timer setting Time (s) #### **Registration of Favorite Monitors** A maximum of 12 monitors can be registered. Registered monitors can be displayed at any time with a simple keystroke. # Does it Take a Long Time to Setup and Recover from Malfunctions? The updated interactive start-up wizard function and redesigned keypad have significantly reduced time required for setup and increases uptime. Downtime: Non-operating time due to equipment problems. # Confirmation of Malfunctions Without the Main Circuit Power Supply By externally supplying 24 Vdc control power, you can safely perform recovery work and confirm malfunctions without applying main circuit power. # **Set Parameters Without the Main Circuit Power Supply** With the USB connection of the drive and the PC, parameters can be set and edited in advance even when unable to prepare the main circuit supply. # TOTAL PROPERTY OF THE #### **Built-in Clock Functions** Easily identify the time of the malfunction with the built-in clock function. Note: Requires a Hitachi Maxell "CR2016 Lithium Manganese Dioxide Battery" or equivalent. #### microSD Slot* Save log data to the microSD card. Saved data can be displayed as a waveform with the "DriveWizard" support tool,* which helps you to understand what malfunction has occurred and simplifies analysis. * Waveform displays in the DriveWizard support tool are under development. #### **Capable of Storing Parameters of the Four Drives** The keypad can now store the parameters of up to four drives. #### **Automatic Parameter Backup Function** Even if there is a problem with the drive, you can remove the keypad and copy the parameters using the automatic parameter backup function. #### **European Terminals** European terminals are installed on the main circuit terminal. Significant reduction in work hours because crimp terminal and crimping operation are now unnecessary. Compatible Models: GA70A2004 to 2211 (200 V class 0.4 to 45 kW (HD)) GA70A4002 to 4168 (400 V class
0.4 to 75 kW (HD)) Note: Screw terminals are used in models other than those listed here. For use of the tools, see P.29. Screw terminal options, cable clamp options is under development. Conditions When wiring input terminals R, S, and T and output terminals U, V, and W: Conventional products: Crimping and wiring work for screw terminals GA700: Wiring work for European terminals #### **Equipped with Setup Wizard Function** Complete initial settings by responding to the questions that appear on the keypad. #### **Reduced Installation Space** 45% reduction in comparison with conventional drives. You can design a compact control (ex. 400 V class 110 kW) Note: The size of the reduced installation space will vary depending on capacity. #### Removable Terminal **Block** Even if you are installing the drive in a small, narrow space, you can remove the terminal block and wire work where you have more space. In addition, if a drive malfunctions, the terminal board can be attached to a new replacement drive without removing the wires. #### **Side-by-Side Installation** Side-by-side installation allows for a more compact design of the control panel. Compatible Models: GA70A2004 to 2082 (200 V class 0.4 to 18.5 kW (HD)) GA70A4002 to 4044 (400 V class 0.4 to 18.5 kW (HD) (ex. 200 V class 0.4 kW) * At least 30 mm of space is needed if installed near a wall. Note: Derating must be considered. #### **Bell-Shaped Holes** Easily installed on walls #### Is Too Much Time Required When There is a Problem? There has been significant improvements in maintainability with linkages to smartphone applications and PC support tools via cloud management. #### **Support Tool "DriveWizard"** Wireless connection and cloud management through smartphones have made maintenance simple and easy. Equipped with various monitors, parameter editing, pattern operation, and oscilloscope function, adjustment and maintenance work for the drive can be executed more easily. #### **Smartphone Application "DriveWizard Mobile"** New form of support utilizing the smartphone such as cloud management of the wireless connection and parameters of the drive. #### [Parameter Management via Cloud] Parameters can be saved and read using the cloud. Press Machine #### Drive #### [Access From Distance] You can access the drives remotely without opening any panels. - Note: 1 "Bluetooth®" is a trademark or registered trademark of Bluetooth SIG, Inc. USA. - 2 Change the keypad to a Bluetooth LCD keypad (option) when accessing drives through Bluetooth connections. Smartphone DriveWizard Mobile (exclusive app) #### [Parameter Setting Change/Drive Operation] - · Easy to change the parameter settings. - · Operational status can be viewed in real time. - · Quick access to troubleshooting information. #### Variety of Functions and Services of the DriveWizard Mobile Change parameter settings Monitor display Troubleshoot Download DriveWizard Mobile at Android terminal content providing service, Google Play Store, for free. The Google Play Store hyper-link is available at the Yaskawa's product and technical information website (http://www. e-mechatronics.com). Note: "Android" and "Google Play" are trademarks/registered trademarks of Google Inc. #### **Complete After Sales Services** Call center and after service division offer support to our customers, seven days a week, 365 days a year. #### **Deliver According to the Customer's Request** Drives can be customized according to your specifications. - · Shipped after installing option to the drive at factory. - · Terminal board with multi-function relay outputs Multi-Function Photocoupler Output Type C (Standard) Multi-Function Digital Output Type A Relay: 2, Photocoupler: 2 Relay: 3, Photocoupler: 0 - · Optional LED keypad Five-digit displaying keypad. - · Optional LCD Keypad with Built-in Bluetooth Interface LCD keypad (standard) (JVOP-KPLCA04AAA) (JVOP-KPLEA04AAA) LCD Keypad with Built-in Bluetooth Interface (JVOP-KPLCC04AAA) Contact Yaskawa for details. ### Struggling with Standards and Adapting Your SUSTAINABLE Products to be Environmentally Friendly? The GA700 is compliant with international standards and designed to support various applications. #### **International Standards** #### **International Standards** | Name | Country | |-----------|-----------| | UL/cUL | U.S.A | | CSA*1 | Canada | | CE*2 | Europe | | RCM *1,*2 | Australia | #### Vessel Standards | Name | Country | |----------|----------------| | NK*1 | Japan | | DNV GL*1 | Germany/Norway | | ABS*1 | U.S.A | | BV*1 | France | | CCS*1 | China | | KR*1 | South Korea | | - | | Products used in ships must be reliable and durable to withstand the harsh environmental conditions. The acquisition of the standard authentication from the corresponding countries are required. Others RoHS directive compliant *1: Under development *2: Please use EMC filter. (Select GA700 EMC built-in model, or use external EMC filter together.) For CE and RCM Marking compliant models, refer to GA700 Technical Manual. #### Wide range of protection for various environmental specifications (or requirements) #### [IP55 Compatible*] Able to be installed in harsh environments because there are no control panels. More variation in installment locations. IP55: The IP Code in JIS must be "dust/jet- * Factory option (under development) #### [Varnish-Coated Printed Circuit Board] The printed circuit board is treated with varnish as standard and can be used under harsh environmental conditions. (IEC 60721-3-3: 3 C2. 3 S2) #### [Resolver Compatible] The GA700 is compatible with rotary resolvers that have higher environmental resistance than encoders. Note: Option card is required. #### [Resistant to vibration, gas, moisture, dust, and oil.] Note: Factory option /ibration #### Is Your Equipment Reliable Enough? The GA700 will continue to run your production lines even if there is a sudden power failure. With the life diagnostic prediction, preventive maintenance of life parts can be performed at the perfect time. #### **Momentary Power Loss Countermeasures** Induction motors and synchronous motors with encoderless control can be controlled with momentary power loss countermeasures. #### [Speed Search Function] Easy restart by searching the rotational speed of the motor when coasting. Ideal for machines with a rotating body such as fans and blowers. # [Momentary Power Loss Recovery to continue operation through a 2-s power loss.*] - The GA700 automatically restarts the motor and keeps the application running in the event of a power loss. - Easy transition to SEMI (Semiconductor Equipment and Materials International). - Reduction of special equipments such as UPS (Uninterruptible power supply). - * A momentary power loss recovery unit (option) is required for certain capacities. #### [KEB Function] The GA700 is equipped with a function called the KEB (Kinetic Energy Back-up), which allows the drive to quickly and safely decelerate and stop without requiring the motor to be in free run when there is a power loss. It is ideal for machines that require power loss measures, such as machine tool spindle motors and film production lines. Continuous operation is possible without requiring the motor to be in free run during a momentary power loss. Emergency stop can also be selected. # Standard Correspondence to SIL3 Without a Contactor STO from two-terminal input (safety shut-off torque) is equipped as standard. Complies with IEC/EN61508 SIL3 and ISO13849-1 Cat.3 PLe. With this function, a high degree of safety can be built without additional equipment, such as an electromagnetic contactor. Saves wiring and space. #### **IP20 Supports All Capacities** The IP20 can be used with all capacities. Since there is no risk of exposure to high-voltage sections of the main circuit, additional safety measures do not need to be taken, such as installing a terminal cover inside the panel. #### **Automatic Parameter Backup Function** Even if there is a problem with the drive, you can remove the keypad and copy the parameters using the automatic parameter backup function. #### **Long Life** With the selection of long-life parts for fans, capacitors, and relays, a design life of 10 years has been achieved. Note: The value was measured under an ambient temperature of 40 °C (open chassis type panels), load factor of 80%, and 24-hour continuous operation. The value varies depending on the conditions of use. #### **Performance Life Monitors** With performance life monitors, the approximate maintenance period of parts can be output as an alarm signal to notify users in advance. In addition, you can monitor the state of deterioration of the parts so that a maintenance plan can be easily developed. ■ GA700 outputs the alarm signal to the PLC controller #### Minimum Heat Generation (when using energy saving unit: D1000, R1000) Regenerative energy that has conventionally been wasted as heat can be effectively used. The GA700 can minimize the generation of heat and avoid issues caused by heat in surrounding equipment. ## **Product Lineup** | | 1 | Th | ree-Phase | e 2 | 200 V Class | |) | Three-Phase 400 V Class | | | | | | | | | |-------------------|-------|--------------------------|-----------------|-----|--------------------------|-----------------|---|--------------------------|-----------------|---|--------------------------|-----------------|--|--|--|--| | Motor
Capacity | | Heavy Du | ity | Ī | Normal D | uty | | Heavy Du | ıty | T | Normal Du | uty | | | | | | kW | | Catalog Code
GA70A::: | Rated
Output | | | | | | 0.4 | + | 2004 | 3.2 A | + | | | + | 4002 | 1.8 A | | | | | | | | | 0.75 | + | 2006 | 5 A | | 2004 | 3.5 A | Н | 4004 | 3.4 A | ł | 4002 | 2.1 A | | | | | | 1.1 | | 2008* | 6.9 A | | 2006 | 6 A | | | | | | | | | | | | 1.5 | + | 2010 | 8 A | + | 2008 | 8 A | Н | 4005 | 4.8 A | + | 4004 | 4.1 A | | | | | | 2.2 | + | 2012 | 11 A | + | 2010 | 9.6 A | Н | 4007 | 5.5 A | + | 4005 | 5.4 A | | | | | | 3 |
| 2018 | 14 A | | 2012 | 12.2 A | Н | 4009 | 7.2 A | + | 4007 | 7.1 A | | | | | | 3.7 | | 2021 | 17.5 A | | 2018 | 17.5 A | Н | 4012 | 9.2 A | + | 4009 | 8.9 A | | | | | | 5.5 | + | 2030 | 25 A | + | 2021 | 21 A | Н | 4018 | 14.8 A | + | 4012 | 11.9 A | | | | | | 7.5 | + | 2042 | 33 A | + | 2030 | 30 A | Н | 4023 | 18 A | + | 4018 | 17.5 A | | | | | | 11 | + | 2056 | 47 A | + | 2042 | 42 A | Н | 4031 | 24 A | + | 4023 | 23.4 A | | | | | | 15 | + | 2070 | 60 A | + | 2056 | 56 A | Н | 4038 | 31 A | + | 4031 | 31 A | | | | | | 18.5 | + | 2082 | 75 A | + | 2070 | 70 A | Н | 4044 | 39 A | + | 4038 | 38 A | | | | | | 22 | + | 2110 | 88 A | + | 2082 | 82 A | Н | 4060 | 45 A | + | 4044 | 44 A | | | | | | 30 | + | 2138 | 115 A | + | 2110 | 110 A | Н | 4075 | 60 A | + | 4060 | 59.6 A | | | | | | 37 | + | 2169 | 145 A | + | 2138 | 138 A | H | 4089 | 75 A | + | 4075 | 74.9 A | | | | | | 45 | + | 2211 | 180 A | + | 2169 | 169 A | Н | 4103 | 91 A | + | 4089 | 89.2 A | | | | | | 55 | + | 2257 | 215 A | + | 2211 | 211 A | Н | 4140 | 112 A | + | 4103 | 103 A | | | | | | 75 | + | 2313 | 283 A | + | 2257 | 257 A | H | 4168 | 150 A | + | 4140 | 140 A | | | | | | 90 | + | 2360 | 346 A | + | 2313 | 313 A | Н | 4208 | 180 A | + | 4168 | 168 A | | | | | | 110 | + | 2415 | 415 A | + | 2360 | 360 A | H | 4250 | 216 A | + | 4208 | 208 A | | | | | | 132 | + | | | + | | | | 4296 | 260 A | + | 4250 | 250 A | | | | | | 160 | | | | | | | + | 4371 | 304 A | + | 4296 | 296 A | | | | | | 200 | | | | + | | | | 4389 | 371 A | + | 4371 | 371 A | | | | | | 220 | + | | | | | | | 4453 | 414 A | | 4389 | 389 A | | | | | | 250 | + | | | + | | | | 4568 | 453 A | + | 4453 | 453 A | | | | | | 315 | + | | | | | | | 4675 | 605 A | | 4568 | 568 A | | | | | | 355 | + | | | | | | | 4726 | 642 A | | 4675 | 675 A | | | | | | 400 | | | | | | | | 4810 | 726 A | | 4726 | 726 A | | | | | | 450 | | | | | | | | 4930 | 810 A | | 4810 | 810 A | | | | | | 500 | | | | | | | | | | | 4930 | 930 A | | | | | | 560 | + | | | | | | | 4H12 | 1090 A | | | | | | | | | 630 | - | | | | | | | | | | 4H12 | 1200 A | | | | | | Notes The C | , , - | 70A 4726 to GA70A / | 41.14.0 | | | | | | | | ★ Δvailable i | | | | | | Note: The GA70A 4726 to GA70A 4H12 are under development. * Available in Japan only Model Number Drives can be customized according to your specifications. | No | Description | |----|---| | 1 | Product series | | 2 | Region code · A: Japan · T: Asia (Singapore, Taiwan) | | 3 | Input power supply voltage • 2: 3-phase AC 200 V Class • 4: 3-phase AC 400 V Class | | 4 | Output Current Note: Indicates the rated output current of the Normal Duty rating rounded off to the nearest whole number. | | 5 | EMC noise filter A: No internal EMC filter (Standard) B: Internal category C3 EMC filter C: Internal category C2 EMC filter | | 6 | Protection Design • B: IP20 (Standard) • F: IP20, UL Type 1 | | 7 | Environmental specification A: Standard K: Gas-resistant M: Humidity-resistant and dust-resistant N: Oil-resistant P: Humidity-resistant, dust-resistant, and vibration-resistant R: Gas-resistant and vibration-resistant S: Vibration-resistant T: Oil-resistant and vibration-resistant Note: Drives with these specifications do not guarantee complete protection for the environmental conditions indicated. | | 8 | Design revision order | | 9 | Control circuit terminal board · A: Relay output/screw clamp terminal board type · C: Photocoupler output/screw clamp terminal board type (Standard) | | No | Description | |----|--| | 10 | Option card (connector CN5-A) A: No option card (Standard) D: Al-A3 (Analog Input) E: Dl-A3 (Digital Input) F: Sl-C3 (CC-Link) G: Sl-ET3 (MECHATROLINK-III) H: SI-N3 (DeviceNet) J: SI-P3 (PROFIBUS-DP) K: SI-T3 (MECHATROLINK-II) M: SI-S3 (CANopen) N: SI-ES3 (EtherCAT)* P: SI-EM3 (Modbus TCP/IP)* R: SI-EN3 (EtherNet/IP)* S: SI-EP3 (PROFINET)* | | 11 | Option card (connector CN5-B) · A: No option card (Standard) · B: AO-A3 (Analog Monitor) · C: DO-A3 (Digital Output) | | 12 | Option card (connector CN5-C) A: No option card (Standard) U: PG-B3 (Complementary Type PG) V: PG-X3 (Motor PG Feedback Line Driver Interface) W: PG-F3 (encoder interface (for Endat and HIPERFACE)) Z: PG-RT3 (Motor Feedback Resolver TS2640N321E64 Interface) | | 13 | Keypad A: LCD keypad (Standard) B: LCD keypad (humidity-resistant and dust-resistant) D: Bluetooth LCD Keypad E: Bluetooth LCD Keypad (humidity-resistant and dust-resistant) F: LED keypad G: LED keypad (humidity-resistant and dust-resistant) | | 14 | Special applications
A: Standard | ^{*:} Contact Yaskawa for EtherCAT, Modbus TCP/IP, EtherNet/IP and PROFINET. #### **Catalog Code** #### **Basic Instructions** #### Outstanding operability and quick setup #### **Keypad Names and Functions** #### **1)RUN LED** Lit while the drive is operating the motor. #### **5ALM LED** The drive lights up if a fault is detected. Flashes when minor faults, tuning errors and operational errors occur. #### **⑦LO/RE LED** - Lit: When the keypad is selected for Run command and frequency reference control (LOCAL). - Off: When a device other than the keypad is selected for Run command and frequency reference control (REMOTE). #### **10**LED Status Ring The corresponding lamp lights depending on the operation status. #### **4 RUN Key** Starts the drive in LOCAL mode. - **6 LO/RE Selection Key** Switches drive control between the keypad (LOCAL) and an external source (REMOTE) for the Run command and frequency reference. - **®STOP Key** Stops drive operation. #### For connecting to a PC (DriveWizard or DriveWorksEZ), a USB copy unit or a LCD keypad. #### ①QR code Import the dedicated smartphone application "DriveWizard Mobile" and use it to retrieve product information. #### **2**Function Keys F1, F2, F3 The functions of the function key depend on the menu that is being displayed. The name of each function appears in the lower half of the display window. #### 3 Display Operation Keys **LEFT Arrow Key** - Moves the cursor to the left. - Returns to the previous screen. #### UP Arrow Key / DOWN Arrow Key - Scrolls up to display the next item. - Scrolls down to display the previous item. - Selects parameter numbers. - Increments setting values. - · Decrements setting values. #### RIGHT Arrow (RESET) Key - Moves the cursor to the right. - Proceeds to the next screen. - Resets the drive to clear a fault. - Used as the start key in Auto-Tuning Mode. #### **ENTER Key** - Inputs parameter numbers and setting values. Press to enter values, edit parameters and set the control mode. - Switches between displays with selection of menu items. Note: QR code is a registered trademark of DENSO WAVE INCORPORATED. #### Keypad LED | Indicator LED | ON | Flashing | Flashing Quickly | OFF | |---------------|--|--|---|--| | RUN | Motor running. | The motor is performing
ramp to stop. The Run command was
inputted when the
frequency reference was
0 Hz | With a Run command inputted from an external command when the Run command source was in LOCAL, the Run command source switched to REMOTE. When the drive was not in the Drive Ready (READY) state, a Run command was inputted from an external command. An emergency stop command has been inputted. The Safe Disable input function was running and the drive output was shut off. When the Run command source was REMOTE, the STOP key on the keypad was pressed and the motor was stopped. The power supply for the drive is turned on when the Run command is inputted from an external source. | Drive is stopped. | | ALM | A fault was detected. | Minor fault was detected.Operation error was detected.Auto-Tuning was detected. | - | Normal operation | | LORE | Sets the Run command source to the keypad (LOCAL). | - | - | Sets the Run command source to a non-keypad external command (REMOTE). | | How the F | RUN light works: | Drive output frequency — | auring stop STOP Hz | UN STOP | #### LED Status Ring LED | | LED Status Ring | State | Content | | | | | | | | |---|--------------------------------|------------------
---|--|--|--|--|--|--|--| | | | Lit | The drive detected a fault. | | | | | | | | | А | ALM/ERR ALM/ER ALM/ER Ready | Flashing | The drive has detected: • an error • an oPE • an error during Auto-Tuning. Note: If the drive detects a fault and an error at the same time, this LED will be lit to indicate the fault. | | | | | | | | | | | OFF | The drive is in normal operation. There are no alarms of faults present. | | | | | | | | | | Ready | Lit | The drive is operating or is ready for operation. | | | | | | | | | | ALMIN ALMIN | Flashing | When the drive is in STo [Safe Torque Off] mode. The drive is in STo [Safe Torque Off] mode. | | | | | | | | | В | Ready | OFF | The drive detected a fault. There is no fault and the drive received an operation command, but the drive cannot operate (such as when in Programming Mode, or when is flashing). | | | | | | | | | | RUN | Lit | The drive is in regular operation. | | | | | | | | | | Alarina a | Flashing | The drive is decelerating to stop. The drive was issued a Run command and the frequency reference is 0 Hz. A DC injection braking command is input via a multi-function digital input terminal while the drive is stopped. | | | | | | | | | С | | Flashing Quickly | Entering a Run command via the input terminals, then switching to REMOTE while the drive is set to LOCAL. Entering a Run command via the input terminals when the drive is not in Drive Mode. Entering a Fast Stop command. The safety function shuts off the drive output. Pushing STOP on the keypad while the drive is running in REMOTE mode. Setting b1-17 = 0 [Run Command at Power Up = Accept existing RUN command] and powering up the drive while the Run command is active. | | | | | | | | | | | OFF | The motor is stopped. | | | | | | | | #### Keypad Example Drive Mode HOME #### Note - Energizing the drive with factory defaults will display the initial start-up screen. Press F2 Key (Home) to display the HOME screen. To prevent the drive from displaying the initial start-up screen, Select [No] - from the [Show Initial Setup Screen] setting. Press Left Arrow Key from the Home screen to display the monitors. - When U1-01 [Freq. Reference] is displayed on the Home screen in LOCAL mode, press ENTER Key to change parameter d1-01 [Frequency Reference]. - The keypad will display [Rdy] when the drive is in Drive Mode and ready to accept a Run command. - The drive will not accept a Run command while in Programming Mode. Set b1-08 [Run Command Select in PRG Mode] to accept or reject a Run command from an external source while in Programming Mode. -Set b1-08 = 0 [Do not accept RUN at Programming] (default) to reject the Run command from an external source while in Programming Mode. -Set b1-08 = 1 [Accept RUN while Programming] to accept the Run command from an external source while in Programming Mode. -Set b1-08 = 2 [Allow Programming only at Stop] to block changes from Drive Mode to Programming Mode while the drive is in operation. #### **Model Selection** #### **Optimizing Control for Each Application** GA700 offers two separate performance ratings: Heavy Duty and Normal Duty. Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor. #### Difference between load ratings: | | Heavy Duty Rating | Normal Duty Rating | | | | | | |--------------------|-----------------------|------------------------------------|--|--|--|--|--| | Parameter settings | C6-01=0 (default) | C6-01=1 | | | | | | | Overload tolerance | 150% 60s | 110% 60s | | | | | | | Carrier frequency | Low carrier frequency | Low carrier frequency (SwingPWM) * | | | | | | * Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency. Available for models less than 450 kW. #### **Heavy Duty Applications** #### Applications #### Selecting a Drive For a conveyor application using an 11 kW motor, select GA70A2056 and set it for Heavy Duty performance (C6-01=0: default). Catalog code: GA70A2056 #### **Normal Duty Applications** #### Applications Selecting a Drive For a fan application using a 11 kW motor, select GA70A2042 and set it for Normal Duty performance (C6-01=1). Catalog code: GA70A2042 #### Standard Specifications Parameter C6-01 sets the drive for Heavy Duty (default) or Normal Duty performance. 200 V Class HD: Heavy Duty, ND: Normal Duty | | 100 | | | | | | | | | | | | | | | | | , | , | | | | |------------------------------|-----------------------------------|--|------------|---|------------|------------|------------|------------|-------------|--------------|--------|---------------------|--------|--------------|-----|---|-----|-----|-------|------------|------------|-----| | | atalog Code
GA70A2∷ | | 004 | 006 | 800 | 010 | 012 | 018 | 021 | 030 | 042 | 056 | 070 | 082 | 110 | 138 | 169 | 211 | 257 | 313 | 360 | 415 | | Max. Applic | able kW | HD | 0.4 | 0.75 | 1.1 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | | Motor Capa | city*1 | ND | 0.75 | 1.1 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | _ | | Input | Input Rated Input A HD | | | 4.8 | 6.7 | 8.9 | 12.7 | 17 | 20.7 | 30 | 40.3 | 58.2 | 78.4 | 96 | 82 | 111 | 136 | 164 | 200 | 271 | 324 | 394 | | Прис | Current*2 | ND | 4.8 | 6.7 | 8.9 | 12.7 | | 20.7 | 30 | 40.3 | 52 | 78.4 | 96 | 114 | 111 | 136 | 164 | 200 | 271 | 324 | 394 | - | | | Rated Output A | HD | 3.2 | 5 | 6.9 | 8 | 11 | 14 | 17.5 | 25 | 33 | 47 | 60 | 75 | 88 | 115 | 145 | 180 | 215 | 283 | 346 | 415 | | | Current | ND | 3.5 | 6 | 8 | 9.6 | | 17.5 | | 30 | 42 | 56 | 70 | 82 | 110 | 138 | 169 | 211 | 257 | 313 | 360 | _ | | | Overload Tolerar | HD Rating: 150% of rated output current for 60 s ND Rating: 110% of rated output current for 60 s Note: Derating may be required for applications that start a | | | | | | | | | and s | nd stop frequently. | | | | | | | | | | | | Output | Carrier Frequenc | су | (Dera | Derating the output current enables a maximum of 15 kHz to be set. Derating the output current is not necessary for an ND rating of 2 kHz and an HD rating up to 8 kHz.) | | | | | | | | | | | | Derating the output current enables a maximum of 10 kHz to be set. (Derating the output current is not necessary for an ND rating of 2 kHz and an HD rating up to 5 kHz.) | | | | | | | | | Max. Output
Voltage | | | Three-phase 200 to 240 V
Note: The maximum output voltage is proportional to the input voltage. | Max. Output Frequency | | | 590 Hz The frequencies that can be set vary depending on the control mode used. | Measures
for
Harmonics | DC Reactor | | | | | | Ex | ternal | optio | ns | | | | | | | | Bui | lt-in | | | | | Braking
Function | Braking Transisto | or | | | | | | | Bui | lt-in | | | | | | | | Ex | terna | l optio | ns | | | EMC filter | EMC filter
EN61800-3, C2/ | /C3 | | | | | | | | | Intern | al (fac | tory o | ption) | | | | | | | | | | | Rated Voltage/
Rated Frequency | У | | ee-pha
powe | | | | | | o 240 | V 50 | /60 Hz | 7 | | | | | | | | | | | Dower | Allowable Voltag | е | | | | | | | | | - | 15% t | o 10% | 6 | | | | | | | | | | Power | Allowable Freque | ency | | | | | | | | | | ±5 | | | | | | | | | | | | | Power
Supply*3 kVA | HD
ND | 1.5
2.0 | 2.0 | 2.8
3.7 | 3.7
5.3 | 5.3
7.1 | 7.1
8.6 | 8.6
12.5 | 12.5
16.8 | | | | 39.9
47.4 | | | | | | 113
135 | 135
164 | 164 | ^{*1:} The rated output current of the drive output amps should be equal to or greater than the motor rated current. ^{*2:} The value displayed is the input current when operating standard Yaskawa motors at the maximum applicable capacity with the rated load at the rated motor speed. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, input side reactor, and wiring conditions. ^{*3:} Rated input capacity is calculated with a power line voltage of 240 V. 400 V Class HD: Heavy Duty, ND: Normal Duty | C | Catalog Code
GA70A4::: | | 002 | 004 | 005 | 007 | 009 | 012 | 018 | 023 | 031 | 038 | 044 | 060 | 075 | 089 | 103 | |--|-----------------------------------|---|---
---|-----|-----|------|---------|---------|----------|--------|------|------|------|------|------|------| | Max. Applicat | ole kW | HD | 0.4 | 0.75 | 1.5 | 2.2 | 3.0 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | | Max. Applicable Motor Capacity** Input Ra Ct Ov Output Ca Max Ma Fre Measures for Harmonics Braking Function EMC filter Ra Ra Ra Ra All Power All Fit | ty*1 | ND | 0.75 | 1.5 | 2.2 | 3.0 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | | Input | Rated Input A | HD | 1.9 | 3.5 | 4.7 | 6.7 | 8.9 | 11.7 | 15.8 | 21.2 | 30.6 | 41.3 | 50.5 | 43.1 | 58.3 | 71.5 | 86.5 | | Прис | Current*2 | ND | 2.5 | 4.7 | 6.7 | 8.9 | 11.7 | 15.8 | 21.2 | 30.6 | 41.3 | 50.5 | 59.7 | 58.3 | 71.5 | 86.5 | 105 | | | Rated Output A | HD | 1.8 | 3.4 | 4.8 | 5.5 | 7.2 | 9.2 | 14.8 | 18 | 24 | 31 | 39 | 45 | 60 | 75 | 91 | | | Current | ND | 2.1 4.1 5.4 7.1 8.9 11.9 17.5 23.4 31 38 44 59.6 74.9 89.2 103 | | | | | | | | | | | | | | | | | Overload Tolerand | HD Rating: 150% of rated output current for 60 s ND Rating: 110% of rated output current for 60 s Note: Derating may be required for applications that start and stop frequently. | | | | | | | | | | | | | | | | | Output | Carrier Frequency | / | | Derating the output current enables a maximum of 15 kHz to be set. Derating the output current is not necessary for an ND rating of 2 kHz and an HD rating up to 8 kHz.) | | | | | | | | | | | | | | | | Max. Output Volta | age | Three-phase 380 to 480 V Note: The maximum output voltage is proportional to the input voltage. | | | | | | | | | | | | | | | | | Max. Output
Frequency | | 590 Hz The frequencies that can be set vary depending on the control mode used. | | | | | | | | | | | | | | | | | DC Reactor | | | tz | | | | | | | | | | | | | | | | Braking Transisto | r | | | | | | | | Built-in | | | | | | | | | EMC filter | EMC filter
EN61800-3, C2/0 | 23 | | | | | | I | nternal | (factory | option |) | | | | | | | | Rated Voltage/
Rated Frequency | | | e-phase
ower su | | | | V to 48 | 30 V 50 |)/60 Hz | | | | | | | | | | Allowable Voltage Fluctuation | ; | | -15% to 10% | | | | | | | | | | | | | | | Power | Allowable Freque | ncy | | ±5% | | | | | | | | | | | | | | | | Power kVA | HD | 1.5 | 2.8 | 3.7 | 5.3 | 7.1 | 9.3 | 13 | 17 | 24 | 33 | 40 | 34 | 46 | 57 | 69 | | | Supply*3 KVA | ND | 2.0 | 3.7 | 5.3 | 7.1 | 9.3 | 13 | 17 | 24 | 33 | 40 | 48 | 46 | 57 | 69 | 84 | | | atalog Code
GA70A4∷ | | 140 | 168 | 208 | 250 | 296 | 371 | 389 | 453 | 568 | 675 | | | |---------------------------|-----------------------------------|-----|---|--|----------------------|------|------------|------------|---------|-----|-----|-----|--|--| | Max. Applicat | ole kW | HD | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 250 | 315 | | | | Motor Capaci | ty*1 | ND | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 250 | 315 | 355 | | | | Input | Rated Input A | HD | 105 | 142 | 170 | 207 | 248 | 300 | 373 | 410 | 465 | 584 | | | | Прис | Current*2 | ND | 142 | 170 | 207 | 248 | 300 | 373
304 | 410 | 465 | 584 | 657 | | | | | Rated Output A | HD | 112 | 150 | 180 | 216 | 260 | 371 | 414 | 453 | 605 | | | | | | Current | ND | 140 | 168 | 208 | 250 | 296 | 371 | 389 | 453 | 568 | 675 | | | | | Overload Tolerand | е | HD Rating: 150% of rated output current for 60 s ND Rating: 110% of rated output current for 60 s Note: Derating may be required for applications that start and stop frequently. | | | | | | | | | | | | | Output | Carrier Frequency | | to be se | Derating the output current enables a maximum of 10 kHz on be set. Derating the output current is not necessary for an ND ating of 2 kHz and an HD rating up to 5 kHz.) Derating the output current is not necessary for an ND ating of 2 kHz and an HD rating up to 5 kHz.) Derating the output current is hardward for an ND at necessary for an ND ATING THE N | | | | | | | | | | | | _ | Max. Output Volta | ge | Three-phase 380 to 480 V Note: The maximum output voltage is proportional to the input voltage. | | | | | | | | | | | | | | Max. Output
Frequency | | 590 Hz The frequencies that can be set vary depending on the control mode used. | | | | | | | | | | | | | Measures for
Harmonics | DC Reactor | | | | | | Bui | lt-in | | | | | | | | Braking
Function | Braking Transistor | | Bui | lt-in | | | | External | options | | | | | | | EMC filter | EMC filter
EN61800-3, C2/C | 3 | | | | Inte | ernal (fac | tory opti | on) | | | | | | | | Rated Voltage/
Rated Frequency | | | | C power
ply 513 V | | | 80 V 50 | /60 Hz | | | | | | | D | Allowable Voltage Fluctuation | | | | | | -15% | to 10% | | | | | | | | Power | Allowable Frequer Fluctuation | псу | | ±5% | | | | | | | | | | | | | Power kVA | HD | 84 | 113 | 136 | 165 | 198 | 239 | 297 | 327 | 370 | 465 | | | | | Supply*3 KVA | ND | 113 | 136 | 165 | 198 | 239 | 297 | 327 | 370 | 465 | 523 | | | ^{\$1}: The rated output current of the drive output amps should be equal to or greater than the motor rated current. ^{*2:} The value displayed is the input current when operating standard Yaskawa motors at the maximum applicable capacity with the rated load at the rated motor speed. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, input side reactor, and wiring conditions. *3: Rated input capacity is calculated with a power line voltage of 480 V. # **Standard Specifications** #### Common Specifications | | Item | Specifications | |-------------------------|--|---| | | itom | The following controls are selected by parameters. | | | Control Method | V/f Control Closed Loop V/f Control Open Loop Vector Control Advanced Open Loop Vector Control Open Loop Vector Control Open Loop Vector Control Open Loop Vector Control for PM Advanced Open Loop Vector Control for PM EZ Open Loop Vector Control EZ Open Loop Vector Control | | | Maximum Output Frequency | Advanced Open Loop Vector Control, EZ Open Loop Vector Control: 120 Hz Closed Loop V/f Control, Closed Loop Vector Control, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM: 400 Hz V/f Control, Open Loop Vector Control, Open Loop Vector Control for PM: 590 Hz | | | Frequency Accuracy (Temperature Fluctuation) | Digital reference: within ±0.01% of the max. output frequency (-10°C to +40°C) Analog reference: within±0.1% of the max. output frequency (25°C±10°C) | | | Frequency Setting
Resolution | Digital reference: 0.01 Hz Analog reference: 1/2048 of the maximum output frequency setting (11 bit plus sign) | | | Output
Frequency
Resolution | 0.001 Hz | | | Frequency Setting
Resolution | Main frequency reference: -10 to +10 Vdc, 0 to 10 Vdc (20 k Ω), 4 to 20 mA (250 Ω), 0 to 20 mA (250 Ω) Main speed reference: Pulse train input (max. 32 kHz) | | | Starting Torque | Vif Control: 150%/3 Hz Closed Loop Vf Control: 150%/3 Hz Open Loop Vector Control: 200%/0.3 Hz Closed Loop Vector Control: 200%/0 min ⁻¹ Advanced Open Loop Vector Control: 200%/0.3 Hz Open Loop Vector Control for PM: 100%/5% speed Advanced Open Loop Vector Control for PM: 200%/0 min ⁻¹ Closed Loop Vector Control for PM: 200%/0 min ⁻¹ EZ Open Loop Vector Control: 100%/1% speed Note: Drive capacity must selected appropriately to obtain this starting torque under Open Loop Vector Control, Closed Loop Vector Control, Advanced Open Loop Vector Control for PM. | | Control Characteristics | Speed Control Range | Vif Control 1:40 Closed Loop V/f Control 1:40 Open Loop Vector Control 1:200 Closed Loop Vector Control 1:1500 Closed Loop Vector Control 1:1500 Advanced Open Loop Vector Control for PM 1:20 Advanced Open Loop Vector Control for PM 1:100 Closed Loop Vector Control for PM 1:1500 EZ Open Loop Vector Control for PM 1:1500 EZ Open Loop Vector Control 1:100 Note: Advanced Open Loop Vector Control for PM is valid when high frequency injection is enabled (n8-57=1). For Advanced Open Loop Vector Control for PM contact your Yaskawa or nearest agent when not using SSR1 series or SST4 | | | Zero Speed Control | series motors manufactured by Yaskawa Motor Co., Ltd. Possible in Closed Loop Vector Control, Advanced Open Loop Vector Control for PM, and Closed Loop Vector Control for PM. | | | Torque Limit | Parameter settings allow separate limits in four quadrants in Open Loop Vector Control, Closed Loop Vector Control, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM, and EZ Open Loop Vector Control. | | | Accel/Decel Time | 0.0 s to 6000.0 s The drive allows four selectable combinations of independent acceleration and deceleration settings. | | | | Approx. 20% Approx. 125% with a dynamic braking option • Short-time average deceleration torque Motor capacity 0.4/0.75 kW: over 100% Motor capacity 1.5 kW: over 50% Motors 2.2 kW and larger: over 20%, Overexcitation Braking / High Slip Braking allow for approx. 40% • Continuous regenerative torque: Approx. 20%. Dynamic braking option allows for approx. 125%, 10% ED, 10 s | | | Braking Torque | Note: Catalog codes GA70□2004 to 2138 and 4002 to 4168 have a built-in braking transistor. Set L3-04 = 0 [Stall Prevention during Decel = Disabled] when using a regenerative converter, regenerative unit, braking unit, braking resistor, or braking resistor unit. The drive could possibly not stop within the specified deceleration time when L3-04 = 1 [General Purpose](default). Short-time deceleration torque refers to the torque required to decelerate the motor (uncoupled from the load) from the rated speed to zero. Actual specifications may vary depending on motor characteristics. Continuous regenerative torque and short-time deceleration torque for motors 2.2 kW and larger vary depending on motor characteristics. | | | V/f Characteristics | Select from 15 predefined V/f patterns, or a user-set V/f pattern. | | | Main Control Functions | Torque Control, Droop Control, Speed/Torque Control switch, Feed Forward Control, Zero Servo Control, Momentary Power Loss Ride-Thru, Speed Search, Overtorque detection, torque limit, 17 Step Speed (max.), accel/decel switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Dwell, cooling fan on/off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, DC Injection Braking at start and stop, Overexcitation Deceleration, High Slip Braking, PID control (with Sleep function), Energy Saving Control, MEMOBUS/Modbus communications. (RS-485/422, max. 115.2 kbps), Fault Restart, Application Presets, DriveWorksEZ (customized functions), Parameter Backup Function, Online Tuning, KEB, Overexcitation Deceleration, Inertia Tuning and ASR Tuning, Overvoltage Suppression, High Frequency Injection, etc. | | | Motor Protection Momentary Overcurrent | Specifications Motor overheat protection based on output current | |---------------------|---|---| | | Momentary Overcurrent | | | | Protection | Drive stops when output current exceeds 200% of the HD output current. | | | Overload Protection | Drive stops after 60 s at 150% of rated HD output current and at 110% of rated ND output current. Note: The drive may trigger the overload protection function at 150% of the drive rated output in under 60 s if the output frequency is less than 6 Hz. | | | Overvoltage Protection | 200 V class: Stops when DC bus exceeds approx. 410 V
400 V class: Stops when DC bus exceeds approx. 820 V | | on | Undervoltage Protection | 200 V class: Stops when DC bus falls below approx. 190 V
400 V class: Stops when DC bus falls below approx. 380 V | | Protection Function | Momentary Power Loss
Ride-Thru | Stops when power loss is longer than approximately 15 ms (default setting). Continues operation if power loss is shorter than 2 s (depending on parameter settings). Note: 1. Stop time may be shortened depending on the load and motor speed. 2. Continuous operation time varies by drive capacity. Catalog codes 2004 to 2056 and 4002 to 4031 require a Momentary Power Loss Recovery Unit to continue operation through a 2 s power loss. | | Prot | Heatsink Overheat
Protection | Thermistor | | | Braking Resistance Overheat Protection | Overheat sensor for braking resistor (optional ERF-type, 3% ED) | | Ì | Stall Prevention | Stall prevention during acceleration/deceleration and constant speed operation | | | Ground Fault Protection | Protection by electronic circuit Note: Protection may not be provided under the following conditions as the motor windings are grounded internally during run: Low resistance to ground from the motor cable or terminal block. Drive already has a short-circuit when the power is turned on. | | | Charge LED | Charge LED remains lit until DC bus has fallen below approx. 50 V | | | Area of Use | Indoors - chemical gas: IEC60721-3-3: 3 C2 - solid particle: IEC60721-3-3: 3 S2 | | | Power Supply | Overcurrent Category III | | | Ambient Temperature | Open chassis type (IP20): -10°C to +50°C Enclosed wall-mounted type (UL Type 1): -10°C to +40°C Do not use the drive in a location where the temperature changes suddenly to improve the drive reliability. When installing the drive in an enclosure, use a cooling fan or air conditioner to keep the internal air temperature in the permitted range. Do not let the drive freeze. Derate the output current and output voltage to install the drive in areas with ambient temperatures ≤ 60 °C. | | Ħ | Humidity | 95% RH or less (no condensation) | | nme | Storage Temperature | Short-term temperature during transportation is -20° C to +70° C | | Environment | Surrounding Area | Pollution degree 2 or less Install the drive in an area without: Oil mist, corrosive or flammable gas, or dust Metal powder, oil, water, or other unwanted materials Radioactive materials or flammable materials, including wood Harmful gas or fluids Salt Direct sunlight Keep wood or other flammable materials away from the drive. | | Ì | Altitude | 1000 m or less*1 | | | Shock | • 10 Hz to 20 Hz, 1 G (9.8 m/s²) Note: 0.2 G for AG70X4930/AG70X4H12 • 20 Hz to 55 Hz, Catalog code GA70□2004 to 2211, 4002 to 4168: 0.6 G (5.9 m/s²), Catalog code GA70□2257 to 2415, 4208 to 4675: 0.2 G (2.0 m/s²) | | Star | ndards Compliance | UL61800-5-1*2 EN61800-3:2004+A1:2012*2 IEC/EN61800-5-1*2 Two Safe Disable inputs and 1EDM output according to ISO/EN13849-1 Cat.3 Ple, IEC/EN61508 SIL3*2 Note: Used by setting functions to multi-function digital output terminals. RCM*3 EAC*3 [Vessel Standards] Germanischer Lloyd*3 DNV*3 ABS*3 NK*3 NK*3 BV*3 CCS*3 KR*3 | | Prot | tection Design | Open chassis type (IP20), Enclosure wall-mounted type (UL Type 1) Note: Installing the UL Type 1 kit to a drive in an open chassis type (IP20) makes the drive compliant with an enclosure wall-mounted type (UL Type 1). | Contact a Yaskawa representative or salesperson for more information. *2: Approval pending for catalog codes GA70 2169 to 2415, and GA70 4371 to 4675. *3: Approval pending. Note: 1 Perform Rotational Auto-Tuning to achieve specifications listed for Open Loop Vector Control and Advanced Open Loop Vector Control. 2 Install the drive in an environment matching the specifications in the table above for optimum performance life. #### Standard Connection Diagram #### Standard Connection Diagram Multi-Function Photocoupler Output Type C (Standard) - *1: We recommend that the sequence that de-energizes the power supply be set via the fault relay output for the drive. When using the Fault Restart function, if L5-02 = 1 [Fault Contact at Restart Select = Always Active], the fault signal is output during Restart Enabled and the power supply will turn OFF. Be careful when using a cut-off sequence. The default setting for L5-02 is 0 [Active Only when Not Restarting]. - *2: Terminals -, +1, +2, B1 and B2 are the optional connection terminals. Do not connect an AC power supply to terminals -, +1, +2, B1, and B2. Failure to obey can cause damage to the drive and peripheral devices. - #3: Be sure to remove the jumper between
terminals +1 and +2 when installing a DC reactor (option). - *4: Catalog codes GA70A2110 to 2415 and 4060 to 4675 have a built-in DC reactor. - *5: Be sure to set L8-55 = 0 [Internal DB Transistor Protection = Disable] when using an optional regenerative converter, regenerative unit, or braking unit. Leaving L8-55 = 1 [Protection Enabled] can cause rF [Braking Resistor Fault] - *6: Set L3-04 = 0 [Stall Prevention during Decel = Disabled] when connecting a regenerative converter, regenerative unit, braking unit, braking resistor, or braking resistor unit. If L3-04 = 1 [Enabled] (default setting), the drive may not stop within the designated deceleration time. - *7: When using a braking resistor (ERF type), set L8-01 = 1 [3% ERF DB Resistor Protection = Enabled] and be sure to use a sequence that shuts the power off by using the fault relay output for the drive. - *8: Self-cooling motors do not require the wiring for the motors with cooling fans. - *9: Connect a 24 V power supply to terminals PS-AC to operate the control circuit while the main circuit power supply is OFF. *10: Use a wire jumper between terminals SC and SP or SC and SN to set the - *10: Use a wire jumper between terminals SC and SP or SC and SN to set the multi-function digital input power supply to SINK Mode, SOURCE Mode, or External power supply. Do not short circuit terminals SP and SN. Failure to obey will cause damage to the drive. - SINK Mode: Install a jumper between terminals SC and SP. Do not short circuit terminals SC and SN. Failure to obey will cause damage to the drive. - SOURCE Mode: Install a jumper between terminals SC and SN. Do not short circuit terminals SC and SP. Failure to obey will cause damage to the drive. - External power supply: No jumper necessary between terminals SC and SN or terminals SC and SP. - *11: The output current capacity of the +V and -V terminals on the control circuit is 20 mA. Do not install a jumper between terminals +V, -V, and AC. Failure to obey can cause damage to the drive. - *12: DIP switches S1-1 to S1-3 set terminals A1 to A3 for voltage or current input. The default setting for S1-1 and S1-3 is voltage input ("V" side). The default setting for S1-2 is current input ("I" side). - *13: DIP switch S4 sets terminal A3 for analog or PTC input. Set DIP switch S1-3 to the "V" side, and set H3-05 = 0 [Terminal A3 Signal Level Select = 0 to 10 V (Lower Limit at 0)] to set terminal A3 for PTC input with DIP switch S4. - *14: Do not ground the control circuit terminals AC or connect them to the drive. Failure to comply may cause malfunction or failure. - *15: Connect the 24 V line of the 24 V control power supply input to terminal PS, and the 0 V line to terminal AC. Do not connect reverse terminals PS and AC. Failure to obey will cause damage to the drive. - *16: Use multi-function analog monitor outputs with analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use monitor outputs with feedback-type signal devices. - *17: Jumper switch S5 sets terminal FM and AM for voltage or current output. The default setting is voltage output ("V" side). *18: Set DIP switch S2 to "ON" to enable the termination resistor in the last - *18: Set DIP switch S2 to "ON" to enable the termination resistor in the las drive in a MEMOBUS/Modbus network. - *19: Use only sourcing mode for Safe Disable input. - *20: Disconnect the wire jumper between H1 and HC, and H2 and HC to use the Safe Disable input. #### Standard Connection Diagram #### Standard Connection Diagram Multi-Function Digital Output Type A (Factory Option) - *1: We recommend that the sequence that de-energizes the power supply be set via the fault relay output for the drive. When using the Fault Restart function, if L5-02 = 1 [Fault Contact at Restart Select = Always Active], the fault signal is output during Restart Enabled and the power supply will turn OFF. Be careful when using a cut-off sequence. The default setting for L5-02 is 0 [Active Only when Not Restarting]. - *2: Terminals -, +1, +2, B1 and B2 are the optional connection terminals. Do not connect an AC power supply to terminals -, +1, +2, B1, and B2. Failure to obey can cause damage to the drive and peripheral devices. - *3: Be sure to remove the jumper between terminals +1 and +2 when installing a DC reactor (option). - *4: Catalog codes GA70A2110 to 2415 and 4060 to 4675 have a built-in DC reactor - *5: Be sure to set L8-55 = 0 [Internal DB Transistor Protection = Disable] when using an optional regenerative converter, regenerative unit, or braking unit. Leaving L8-55 = 1 [Protection Enabled] can cause rF [Braking Resistor - *6: Set L3-04 = 0 [Stall Prevention during Decel = Disabled] when connecting a regenerative converter, regenerative unit, braking unit, braking resistor, or braking resistor unit. If L3-04 = 1 [Enabled] (default setting), the drive may not stop within the designated deceleration time. - *7: When using a braking resistor (ERF type), set L8-01 = 1 [3% ERF DB Resistor Protection = Enabled] and be sure to use a sequence that shuts the power off by using the fault relay output for the drive. - *8: Self-cooling motors do not require the wiring for the motors with cooling - ★9: Connect a 24 V power supply to terminals PS-AC to operate the control - circuit while the main circuit power supply is OFF. *10: Use a wire jumper between terminals SC and SP or SC and SN to set the multi-function digital input power supply to SINK Mode, SOURCE Mode, or External power supply. Do not short circuit terminals SP and SN. Failure to obey will cause damage to the drive. - SINK Mode: Install a jumper between terminals SC and SP. Do not short circuit terminals SC and SN. Failure to obey will cause damage to the drive. - SOURCE Mode: Install a jumper between terminals SC and SN. Do not short circuit terminals SC and SP. Failure to obey will cause - · External power supply: No jumper necessary between terminals SC and SN or terminals SC and SP. - *11: The output current capacity of the +V and -V terminals on the control circuit is 20 mA. Do not install a jumper between terminals +V. -V. and AC. Failure to obey can cause damage to the drive. - *12: DIP switches S1-1 to S1-3 set terminals A1 to A3 for voltage or current input. The default setting for S1-1 and S1-3 is voltage input ("V" side). The default setting for S1-2 is current input ("I" side). - $\pmb{*}$ 13: DIP switch S4 sets terminal A3 for analog or PTC input. Set DIP switch S1-3 to the "V" side, and set H3-05 = 0 [Terminal A3 Signal Level Select = 0 to 10 V (Lower Limit at 0)] to set terminal A3 for PTC input with DIP switch S4. - *14: Do not ground the control circuit terminals AC or connect them to the drive. Failure to comply may cause malfunction or failure. - **★15**: Connect the 24 V line of the 24 V control power supply input to terminal PS, and the 0 V line to terminal AC. Do not connect reverse terminals PS and AC. Failure to obey will cause damage to the drive. - *16: Use multi-function analog monitor outputs with analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use monitor outputs with feedback-type signal devices. - \$17: Jumper switch S5 sets terminal FM and AM for voltage or current output. - The default setting is voltage output ("V" side). *18: Set DIP switch S2 to "ON" to enable the termination resistor in the last drive in a MEMOBUS/Modbus network. - *19: Use only sourcing mode for Safe Disable input. - *20: Disconnect the wire jumper between H1 and HC, and H2 and HC to use the Safe Disable input. ## **Terminal Specifications** #### Terminal Functions #### Main Circuit Terminals Max. Applicable Motor Capacity indicates Heavy Duty | Voltage | | 200 V Class | | | 400 V Class | | | | | | | | | |-----------------------------------|----------------------------|-----------------------------|------------------------|--------------------------------|-----------------------|--|--------------|--|--|--|--|--|--| | Catalog Code GA70A | 2004 to 2082 | 2110 to 2138 | 2169 to 2415 | 4002 to 4044 | 4060 to 4168 | 4208 to 4389 | 4453 to 4675 | | | | | | | | Max. Applicable Motor
Capacity | 0.4 to 18.5 | 22, 30 | 37 to 110 | 0.4 to 18.5 | 22 to 75 | 90 to 220 | 260 to 355 | | | | | | | | R/L1, S/L2, T/L3 | Main | circuit input power s | supply | | Main circuit inp | ut power supply | | | | | | | | | R1/L11, S1/L21, T1/L31 | | - | | - | | | | | | | | | | | U/T1, V/T2, W/T3 | | Drive output | | | Drive output | | | | | | | | | | B1, B2 | Braking re | sistor unit | - | Braking re | Braking resistor unit | | | | | | | | | | +2 | DC reactor | | _ | DC reactor | | _ | | | | | | | | | +1 | (+1,+2)
DC power supply | DC power supply | DC power supply | (+1, +2)
DC power supply | DC power supply | | | | | | | | | | - | (+1,-) | (+1,-) | (+1,-)
Braking unit | (+1,-) | (+1,-) | DC power supply (+1,-) Braking unit (+3,-) | | | | | | | | | +3 | | _ | (+3,-) | | _ | Diaming diffe (10, 7 | | | | | | | | | | Grour | nd terminal (100 Ω o | or less) | Ground terminal (10 Ω or less) | | | | | | | | | | Note: Use terminals B1 and - to connect a CDBR braking unit to drive models 2004 to 2138 and 4002 to 4168 with built-in braking transistors. Control Circuit Input Terminals (200 V/400 V Class) | Terminal Type | Terminal | Signal Function (default) | Description (Signal Level) | | | | | | | | | |--------------------|----------|---|---|--|--
--|--|--|--|--|--| | | S1 | Multi-function input selection 1 (ON: Forward run OFF: Stop) | | | | | | | | | | | | S2 | Multi-function input selection 2
(ON: Reverse run OFF: Stop) | Photocoupler 24 V. 6 mA | | | | | | | | | | | S3 | Multi-function input selection 3 (External fault, N.O.) | Note: Use a wire jumper between terminals SC and SP or SC and SN to set the multi-function | | | | | | | | | | | S4 | Multi-function input selection 4 (Fault reset) | digital input power supply to SINK Mode, SOURCE Mode, or External power supply. SINK Mode: Install a jumper between terminals SC and SP. | | | | | | | | | | Multi-Function | S5 | Multi-function input selection 5 (Multi-step speed reference 1) | Do not short circuit terminals SC and SN. Failure to obey will cause damage to the drive. SOURCE Mode: Install a jumper between terminals SC and SN. | | | | | | | | | | Digital Input | S6 | Multi-function input selection 6 (Multi-step speed reference 2) | Do not short circuit terminals SC and SP. Failure to obey will cause damage to the drive. | | | | | | | | | | | S7 | Multi-function input selection 7 (Jog frequency) | External power supply: No jumper necessary between terminals SC and SN o
terminals SC and SP. | | | | | | | | | | | S8 | Multi-function input selection 8 (Baseblock(N.O.)) | | | | | | | | | | | | SN | Digital input power supply 0V
24V transducer power supply 0V | Multi-function digital input power supply and sensor power supply, 24 Vdc (max. 150 mA) | | | | | | | | | | | SC | Multi-functions input common | Note: Do not install a jumper between terminals SP and SN. Failure to comply will damage the drive. | | | | | | | | | | | SP | Multi-function input power supply +24 Vdc | | | | | | | | | | | | H1 | Safety Input1 | Remove the jumper between terminals H1-HC and H2-HC when using the Safe Disable input. | | | | | | | | | | Safety Input | H2 | Safety Input2 | 24 Vdc 6 mA 0N: Normal operation 0FF: Output disabled Internal impedance 4.7 kΩ Switching time at least 2 ms | | | | | | | | | | | НС | Safety input common | Safety input common Note: Do not install a jumper between terminals HC and SN. Failure to comply will damage the drive. | | | | | | | | | | | RP | Multi-function pulse train input
(Main frequency reference) | Scaling: 0.1 Hz to 32 kHz H duty: 30% to 70% H level voltage: 3.5 V to 13.2 V L level voltage: 0.0 V to 0.8 V impedance: 3 kΩ | | | | | | | | | | | +V | Setting power supply | 10.5 V (20 mA max.) | | | | | | | | | | | -V | Setting power supply | -10.5 V (20 mA max.) | | | | | | | | | | Main
Frequency | A1 | Multi-function analog input 1 (Main frequency reference) | Voltage input or current input DIP switch S1-1 and H3-01 can be used to set the voltage or current output for terminal A1 (Terminal A1 Signal Level Select.) DIP switch S1-2 and H3-09 can be used to set the voltage or current output for terminal | | | | | | | | | | Reference
Input | A2 | Multi-function analog input 2 (Frequency reference bias with terminal A1) | A2 (Terminal A2 Signal Level Select.) • -10 to $+10$ Vdc for -100 to $+100$ % (impedance 20 k Ω) • 0 to 10 Vdc for 0 to 100 % (impedance 20 k Ω) • 0 to 0 mA for 0 to 0 to 0 00%, 0 0 to 0 0 mA for 0 0 to 0 0% (impedance 0 0 mA for 0 0 to 0 0%) | | | | | | | | | | | А3 | Multi-function analog input 3/PTC input (Auxiliary frequency reference) | Voltage input or current input Selected with dip switches S1-3 and H3-05 (Terminal A3 Signal Level Select.) • -10 to +10 Vdc for -100 to +100% (impedance $20~\text{k}\Omega$) • 0 to 10 Vdc for 0 to 100% (impedance $20~\text{k}\Omega$) • 4 to 20 mA for 0 to 100%, 0 to 20 mA for 0 to 100% (impedance $250~\Omega$) PTC input (For motor overheat protection) Set DIP switch S4 to "PTC" and set DIP switch S1-3 to "V" to set terminal A3 for PTC input. | | | | | | | | | | | AC | Frequency reference common | 0 V | | | | | | | | | | | E (G) | Shielded cable | - | | | | | | | | | | Fault Relay | MA | N.O. output
(Fault) | Relay output | | | | | | | | | | Output | MB | N.C. output
(Fault) | 30 Vdc or less, 10 mA to 1 A 250 Vac or less, 10 mA to 1 A Minimum load: 5 Vdc, 10 mA (Values only for reference) | | | | | | | | | | | MC | Digital output common | • Minimum load: 5 Vdc, 10 mA (Values only for reference) | | | | | | | | | #### Control Circuit Input Terminals (200 V/400 V Class) (continued) | Terminal Type | Terminal | Signal Function (default) | Description (Signal Level) | | | | | | | | | |--------------------------|----------|---|--|--|--|--|--|--|--|--|--| | | M1
M2 | Multi-function digital output
(During run) | Relay output 30 Vdc or less, 10 mA to 1 A 250 Vac or less, 10 mA to 1 A Missingulard F Vdc 10 A (Vduce only for reference) | | | | | | | | | | Multi-Function | МЗ | Multi-function digital output | | | | | | | | | | | Digital Output | M4 | (zero speed) | Minimum load: 5 Vdc, 10 mA (Values only for reference) Note: Refrain from assigning functions to terminals M1 and M2, M3 and M4, and M4 and M5 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load). | | | | | | | | | | | M5*1 | Multi-function digital output | | | | | | | | | | | | M6*1 | (Speed agree1) | Switching life is estimated at 200,000 times (assumes 1 A, resistive load). | | | | | | | | | | | P1 | Multi-Function Photocoupler Output | Photocoupler output 48 Vdc or less, 2 to 50 mA | | | | | | | | | | Multi-Function | C1 | (Speed agree1) | Note: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated External power Coil ywar (50 mA max.) | | | | | | | | | | Photocoupler
Output*2 | P2 | Multi-Function Photocoupler Output | | | | | | | | | | | | C2 | (Through mode) | higher than the circuit voltage. | | | | | | | | | | | MP | Pulse train input
(Output frequency) | Max. 32 kHz | | | | | | | | | | Monitor Output | FM | analog monitor (1)
(Output frequency) | Voltage or current output · 0 to 10 Vdc for 0 to 100% · -10 to 10 Vdc for -100 to 100% | | | | | | | | | | | AM | analog monitor (2)
(Output current) | · 4 to 20 mA Note: Set jumper S5, and H4-07 (Terminal FM Signal Level Select.) and H4-08 (Terminal AM Signal Level Select.) to select the signal type for terminals AM and FM. | | | | | | | | | | | AC | Monitor common | 0 V | | | | | | | | | ^{*1:} Multi-function digital output type A is compatible. #### External Power Supply Input Terminals (200 V/400 V Class) | Type | Terminal | Terminal Name (Default) | Function | |------------------------|----------|-----------------------------------|---| | External power | PS | External 24 V power supply input | Supplies backup power to the drive control circuit, keypad, and option card. 21.6 Vdc to 26.4 Vdc, 700 mA | | supply input terminals | AC | External 24 V power supply ground | 0 V | #### Serial Communication Terminals (200 V/400 V Class) | Classification | Terminal | Signal Function | Description (| Signal Level) | |-----------------------|----------|--------------------------|---|--| | MEMOBUS / | D+ | Communications input (+) | MEMOBUS/Modbus communications: Use a RS-485 cable to connect the drive. Note: Set DIP switch S2 to ON to enable the | RS-485 MEMOBUS/Modbus communications | | Modbus communications | D- | Communications input (-) | termination resistor in the last drive in a MEMOBUS/Modbus network. | | | | AC | Shield ground | 0 V | | #### Screw Terminal The screw terminal type for the main circuit terminal (factory option) is being prepared. #### Tools for Wiring European Style Terminal Blocks (Recommended product) Check the "Terminal size / Wire gauge" on the next page and prepare the tools for wiring. | Screw size | Screw type | Recommended Product | |------------|---------------------------|--| | M4 | Slot | Prepare the following two tools. - Bit [PHOENIX CONTACT] Model: SF-BIT-SL 1,0X4,0-70 - Torque screwdriver [PHOENIX CONTACT] Model: TSD-M 3NM (1.2 to 3 N·m) | | M5 | Slot | When wiring drive models GA70 □ 2056 and GA70 □ 4089 or earlier models, be sure to correctly select tools based on the wire gauges. Wiring Gauge: ≤25 mm² or AWG10 · Bit [PHOENIX CONTACT] Model: SF-BIT-SL 1,2X6,5-70 · Torque screwdriver [PHOENIX CONTACT] Model: TSD-M 3NM (1.2 to 3 N·m) Wiring Gauge: ≥30 mm² or AWG8 · Torque wrench that includes a torque measurement range of 4.5 N·m · Bit socket holder of 6.35 mm | | | Hex
socket
(WAF: 5) | Prepare the following three tools. - Bit [PHOENIX CONTACT] Model: SF-BIT-HEX 5-50 - Torque wrench that includes a torque measurement range of 9 N·m - Bit socket holder of 6.35 mm | | M6 | Minus | Prepare the following three tools for the models GA70 2138, and GA70 4103. Bit [PHOENIX CONTACT] Model: SF-BIT-SL 1,2X6,5-70 Torque
wrench that includes a torque measurement range of 3.5 N·m Bit socket holder of 6.35 mm | | M8 | Hex
socket
(WAF: 6) | Prepare the following three tools. Bit [PHOENIX CONTACT] Model: SF-BIT-HEX 6-50 Torque wrench that includes a torque measurement range of 12 N·m Bit socket holder of 6.35 mm | | M10 | 0 | socket
(WAF: 8) | · Torque | SF-BIT-HEX
wrench that ir
f 14 N·m
ket holder of | ncludes a | torque measuremen | |-----|----|---------------------------|-----------|---|-----------|-------------------| | | | Bit | | Torque scre | ewdriver | Torque wrench | | | Αŗ | oplication s | crew slot | | | | | | | $\Rightarrow \Rightarrow$ | 0 | | | | | | | | | | | | | | | | | Bit socket ho | older | | | | | | В | it socket hold | der | | | | | | B | | | | | | | S: 6.35 m | ım S | | | sq | Prepare the following three tools. Bit [PHOENIX CONTACT] Model: SF-BIT-HEX 8-50 Hex M10 ^{*2:} Multi-function photocoupler output type C (standard) is compatible. #### **Terminal Specifications** #### Terminal Size / Wire Gauge | Catalog | | Recommended | Wire Range
(IP20 | Wire
Stripping | Term | inal Screw | Tightening | Catalog | | Recommended | Wire Range
(IP20 | Wire
Stripping | Term | ninal Screw | Tightening | |----------------|------------------|--------------|--------------------------------------|-------------------|------|------------|-----------------|------------------|---|----------------|--------------------------------------|-------------------|-------|------------------------|-----------------| | code
3A70A□ | Terminal | Gauge
mm² | Compatible
Gauge) mm ² | Length*1 | Size | Shape | Torque
N · m | code
GA70A□ | Terminal | Gauge
mm² | Compatible
Gauge) mm ² | Length*1 | Size | Shape | Torque
N · m | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 22 | 2 to 22
(8 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 0004 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 0050 | U/T1, V/T2, W/T3 | 14 | 2 to 14
(5.5 to 14) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 2004 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2056 | -,+1,+2 | 38 | 2 to 38
(8 to 38) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 38 | 2 to 38
(22 to 38) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | 2006 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 2070 | U/T1, V/T2, W/T3 | 22 | 2 to 22
(14 to 22) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | 2000 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2070 | -,+1,+2 | 50 | 2 to 50
(22 to 50) | 20 | M6 | Hex socket
(WAF: 5) | 5 to 5.5 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 50 | 2 to 50
(22 to 50) | 20 | M6 | Hex socket
(WAF: 5) | 5 to 5.5 | | 0000 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 0000 | U/T1, V/T2, W/T3 | 30 | 2 to 30
(14 to 30) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | 2008 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2082 | -,+1,+2 | 60 | 2 to 60
(22 to 60) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 38 | 22 to 38
(22 to 38) | 27 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | 2010 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | U/T1, V/T2, W/T3 | 38 | 22 to 38
(22 to 38) | 27 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2110 | -,+1 | 60 | 30 to 60
(30 to 60) | 27 | M8 | Hex socket
(WAF: 6) | 10 to 12 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 22 | 8 to 22
(8 to 22) | 21 | М6 | Minus (-) | 3 to 3.5 | | | R/L1, S/L2, T/L3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 60 | 22 to 60
(38 to 60) | 27 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | U/T1, V/T2, W/T3 | 60 | 22 to 60
(38 to 60) | 27 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | 2012 | -,+1,+2 | 3.5 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2138 | -,+1 | 80 | 30 to 80
(50 to 80) | 27 | M8 | Hex socket
(WAF: 6) | 10 to 12 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 30 | 8 to 30
(8 to 30) | 21 | М6 | Minus (-) | 3 to 3.5 | | | R/L1, S/L2, T/L3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 80 | 50 to 100
(80 to 100) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 0010 | U/T1, V/T2, W/T3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 0400 | U/T1, V/T2, W/T3 | 80 | 50 to 125
(80 to 125) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 2018 | -,+1,+2 | 5.5 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2169 | -, -, +1, +1*3 | 38*4 | 22 to 50
(50) | 28 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | +3 | 60 | 30 to 80*5
(50 to 80) *5 | 28 | M8 | Hex socket
(WAF: 6) | 8 to 9 | | | R/L1, S/L2, T/L3 | 8 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 100 | 50 to 100
(80 to 100) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | | U/T1, V/T2, W/T3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | U/T1, V/T2, W/T3 | 125 | 50 to 125
(80 to 125) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 2021 | -,+1,+2 | 8 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 2211 | -, -, +1, +1*3 | 50 | 22 to 50
(50) | 28 | M6 | Hex socket
(WAF: 5) | 8 to 9 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | +3 | 80 | 30 to 80*5
(50 to 80) *5 | 28 | M8 | Hex socket
(WAF: 6) | 8 to 9 | | | R/L1, S/L2, T/L3 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | nove the insulate | or from the ti | ps of wires | s to the le | ength | shown in | "Wire | | | U/T1, V/T2, W/T3 | 8 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | ≭ 2: Wh | pping Length.
en using wire wit
to 4.5 N⋅m. | h a gauge o | ver 30 mm | ı², tighter | to a | tightening | torque o | | 2030 | -,+1,+2 | 14 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | * 3: Terr | ninals - and +1 I
ge of one termir | | ews. Reco | mmende | d Ga | uge means | s the wire | | | D1 D2 | 3.5 | 2 to 5.5 | 10 | MA | Slot (-) | 15 to 17 | | cables in the ra | | cable gaug | ges to me | et th | e IP20 pro | tective | les in the range of applicable gauges to meet the IP20 protective Assume the following usage conditions: 3.5 10 M4 M4 2 to 14 (2 to 14) 2 to 14 (2 to 14) 2 to 22 (2 to 22) M4 Slot (-) 1.5 to 1.7 1.5 to 1.7 1.5 to 1.7 1.5 to 1.7 Slot (-) Slot (-) B1, B2 R/L1, S/L2, T/L3 U/T1, V/T2, W/T3 -,+1,+2 B1, B2 ^{*5:} A junction terminal is required when connecting a braking unit (CDBR series) or a braking resistor unit (LKEB series). Note: The recommended wire gauges based on drive continuous current ratings using 75°C 600 V class 2 heat resistant indoor PVC wire. [·] Ambient temperature: 40°C or lower [·] Wiring distance: 100 m or shorter [·] Normal Duty rated current value #### 400 V Class | Catalog | | Recommended | Wire Range
(IP20 | Wire
Stripping | Term | inal Screw | Tightening | Catalog | | Recommended | Wire Range
(IP20 | Wire
Stripping | Terr | minal Screw | Tightening | |----------------|------------------|--------------|--------------------------------------|-------------------|------|------------------------|-----------------|------------------|--|-----------------|--------------------------------------|-------------------|--------|------------------------|-----------------------------| | code
GA70A□ | Terminal | Gauge
mm² | Compatible
Gauge) mm ² | Length*1
mm | Size | Shape | Torque
N · m | code
GA70A□ | Terminal | Gauge
mm² | Compatible
Gauge) mm ² | Length*1 | Size | Shape | Torque
N · m | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 14 | 2 to 22
(8 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 4002 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4038 | U/T1, V/T2, W/T3 | 14 | 2 to 14
(5.5 to 14) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 4002 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4000 | -,+1,+2 | 22 | 2 to 38
(8 to 38) | 20 | M6 | Hex socket
(WAF: 5) | 5 to 5.5 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 5.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 14 | 2 to 14
(3.5 to 14) | 18 | M5 | Slot (-) | 2.3 to
2.5* ² | | 4004 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4044 | U/T1, V/T2, W/T3 | 14 | 2 to 14
(5.5 to 14) | 18 | M5 | Slot (-) |
2.3 to
2.5*2 | | 4004 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4044 | -,+1,+2 | 22 | 2 to 22
(3.5 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5* ² | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 8 | 2 to 8
(2 to 8) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 14 | 2 to 14
(3.5 to 14) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 4005 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4060 | U/T1, V/T2, W/T3 | 14 | 2 to 14
(5.5 to 14) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 4005 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4060 | -,+1 | 22 | 2 to 22
(3.5 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 22 | 2 to 22
(3.5 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5* ² | | 4007 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4075 | U/T1, V/T2, W/T3 | 22 | 2 to 22
(3.5 to 22) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | 4007 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4075 | -, +1 | 30 | 2 to 30
(3.5 to 30) | 18 | M5 | Slot (-) | 2.3 to
2.5*2 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 14 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 30 | 2 to 30
(5.5 to 30) | 18 | M5 | Slot (-) | 2.3 to 2.5* | | 4000 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4000 | U/T1, V/T2, W/T3 | 30 | 2 to 30
(5.5 to 30) | 18 | M5 | Slot (-) | 2.3 to 2.5* | | 4009 | -,+1,+2 | 2 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4089 | -,+1 | 38 | 2 to 38
(22 to 38) | 20 | М6 | Hex socket
(WAF: 5) | 5 to 5.5 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 22 | 2 to 22
(3.5 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5* | | | R/L1, S/L2, T/L3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 38 | 22 to 60
(38 to 60) | 27 | M6 | Hex socket
(WAF: 5) | 8 to 9 | | 4010 | U/T1, V/T2, W/T3 | 2 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4100 | U/T1, V/T2, W/T3 | 38 | 22 to 60
(38 to 60) | 27 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | 4012 | -,+1,+2 | 3.5 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4103 | -,+1 | 50 | 30 to 80
(50 to 80) | 27 | M8 | Hex socket
(WAF: 6) | 10 to 12 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 30 | 8 to 30
(8 to 30) | 21 | M6 | Minus (-) | 3 to 3.5 | | | R/L1, S/L2, T/L3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 60*4 | 50 to 100
(80 to 100) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 1010 | U/T1, V/T2, W/T3 | 3.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 44.40 | U/T1, V/T2, W/T3 | 60*4 | 50 to 125
(80 to 125) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 4018 | -,+1,+2 | 5.5 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4140 | -,-,+1,+1*3 | 30*4 | 22 to 50
(50) | 28 | M6 | Hex socket
(WAF: 5) | 8 to 9 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 50 | 30 to 80*5
(50 to 80) *5 | 28 | M8 | Hex socket
(WAF: 6) | 8 to 9 | | | R/L1, S/L2, T/L3 | 8 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | R/L1, S/L2, T/L3 | 80 | 50 to 100
(80 to 100) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 4000 | U/T1, V/T2, W/T3 | 5.5 | 2 to 14
(2 to 14) | 10 | M4 | Slot (-) | 1.5 to 1.7 | 4400 | U/T1, V/T2, W/T3 | 80 | 50 to 125
(80 to 125) | 37 | M10 | Hex socket
(WAF: 8) | 12 to 14 | | 4023 | -,+1,+2 | 14 | 2 to 22
(2 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | 4168 | -,-,+1,+1*3 | 38*4 | 22 to 50
(50) | 28 | М6 | Hex socket
(WAF: 5) | 8 to 9 | | | B1, B2 | 2 | 2 to 5.5
(2 to 5.5) | 10 | M4 | Slot (-) | 1.5 to 1.7 | | B1, B2 | 60 | 30 to 80*5
(50 to 80) *5 | 28 | M8 | Hex socket
(WAF: 6) | 8 to 9 | | | R/L1, S/L2, T/L3 | 14 | 2 to 22
(8 to 22) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | | nove the insulator fro
en using wire with a c | | | | | | | | | U/T1, V/T2, W/T3 | 8 | 2 to 14
(5.5 to 14) | 18 | M5 | Slot (-) | 2.3 to 2.5*2 | ★ 3: Terr | ninals - and +1 have
e cables in the ran | two screws. Red | commended 0 | auge mear | ns the | wire gauge of | one termina | | 4031 | -,+1,+2 | 14 | 2 to 38
(8 to 38) | 20 | M6 | Hex socket
(WAF: 5) | 5 to 5.5 | ∗ 5: A jı | unction terminal
a braking resisto | is required v | vhen conne | | | | | | | | | 2 to 14 | | | l | | | he recommende | | | n drive c | ontin | | nt ratings | Slot (-) 1.5 to 1.7 M4 B1, B2 \$5: A junction terminal is required when connecting a braking unit (CDBR series) or a braking resistor unit (LKEB series). Note: The recommended wire gauges based on drive continuous current ratings using 75°C 600 V class 2 heat resistant indoor PVC wire. Assume the following usage conditions: [·] Ambient temperature: 40°C or lower · Normal Duty rated current value · Wiring distance: 100 m or shorter #### Enclosures 200 V Class HD: Heavy Duty, ND: Normal Duty | Catalog Code GA70A | 2004 | 2006 | 2008 | 2010 | 2012 | 2018 | 2021 | 2030 | 2042 | 2056 | 2070 | 2082 | 2110 | 2138 | 2169 | 2211 | 2257 | 2313 | 2360 | 2415 | |-------------------------|------|---|------|------|------|------|--------|-------|----------|----------|----------|---------|---------|------|------|------|------|------|------|------| | Max. Applicable (kW) HD | 0.4 | 0.75 | 1.1 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | | Motor Capacity (KVV) ND | 0.75 | 1.1 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | - | | Open Chassis [IP20] | | | | | | | | IP20 | suppo | rted wi | ith stan | dard n | nodel | | | | | | | | | Enclosure Wall-Mounted | | Option supported (Install UL Type 1 kit for IP20) | | | | | | | | | | | * | | | | | | | | | [UL Type1] | | | | | | | Option | suppo | rtea (ii | istali U | L Type | I KILIC | JI IPZU | , | | | | | | ~ | #### 400 V Class HD: Heavy Duty, ND: Normal Duty | Catalog Code GA70A | | 4002 | 4004 | 4005 | 4007 | 4009 | 4012 | 4018 | 4023 | 4031 | 4038 | 4044 | 4060 | 4075 | 4089 | 4103 | |-----------------------------------|----|------|------|------|------|------|-----------|------------|-----------|----------|-------------|------|------|------|------|------| | Max. Applicable (kW) | HD | 0.4 | 0.75 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | | Motor Capacity (KVV) | ND | 0.75 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | | Open Chassis [IP20] | | | | | | | IP20 | supporte | d with st | andard n | nodel | | | | | | | Enclosure Wall-Mounted [UL Type1] | t | | | | | C | ption sup | oported (I | nstall UL | Type 1 k | it for IP20 | 0) | | | | | | Catalog Code GA70A | | 4140 | 4168 | 4208 | 4250 | 4296 | 4371 | 4389 | 4453 | 4568 | 4675 | |-----------------------------------|----|-------|-----------|-------------|------------|-------------|-----------|----------|------|------|------| | Max. Applicable (kW) | HD | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 250 | 315 | | Motor Capacity (KVV) | ND | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 250 | 315 | 355 | | Open Chassis [IP20] | | | | | IP20 sup | ported wi | th standa | rd model | | | | | Enclosure Wall-Mounted [UL Type1] | b | Optio | on suppor | rted (Insta | II UL Type | 1 kit for I | P20) | | > | k | | ^{*} UL Type 1 is not available for this capacity. #### ■ Open Chassis [IP20] 200 V Class | Catalog Code | Eiguro | | | | | | | | Dim | ensions | mm | | | | | | | | Weight kg | |--------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|---------|----|-----|------|------|------|-----|-----|-------|-----------| | GA70A∷ | Figure | W | Н | D | D1 | D2 | W1 | W2 | W3 | W4 | W5 | H1 | H2 | Н3 | H4 | t1 | t2 | d | weight kg | | 2004 | 2006 | 2008 | | | | 176 | | 38 | | | | | | | | | | | | | 3.5 | | 2010 | 2012 | | 140 | 260 | | 138 | | 102 | 102 | | | | 248 | 6 | | | 1.6 | 5 | M5 | | | 2018 |] , | | | | | | | | _ | _ | _ | | | | _ | 1.0 | | IVIS | 3.9 | | 2021 | ' | | | 211 | | 73 | | | - | _ | - | | | - | _ | | | | 5.9 | | 2030 | | | | 211 | | 13 | | | | | | | | | | | | | 4.2 | | 2042 | | | | | | | | | | | | | | | | | | | 4.2 | | 2056 | | 180 | 300 | 202 | 134 | 68 | 140 | 140 | | | | 284 | | | | | 1.6 | | 6.0 | | 2070 | | 220 | 350 | 227 | 140 | 87 | 192 | 192 | | | | 335 | 8 | | | 2.3 | 2.3 | M6 | 8.5 | | 2082 | | 220 | 330 | 221 | 140 | 07 | 192 | 192 | | | | 333 | | | | 2.3 | 2.3 | IVIO | 9 | | 2110 | 2 | 240 | 400 | 280 | 166 | 114 | 195 | 186 | - | - | 12 | 375 | 17.5 | - | 17.5 | 2.3 | 2.3 | M6 | 22 | | 2138 | | 255 | 450 | 280 | 166 | 114 | 170 | 165 | | | | 424 | 16 | 29 | 21 | | | M6 | 24 | | 2169 | 3 | 264 | 543 | 335 | 186 | 149 | 190 | 182 | - | - | 12 | 516 | 17.5 | 28.5 | 20.5 | 2.3 | 2.3 | M8 | 39 | | 2211 | | 204 | 343 | 333 | 100 | 149 | 190 | 102 | | | | 310 | 17.5 | 20.5 | 20.5 | | | IVIO | 40 | | 2257 | 4 | 312 | 700 | 420 | 260 | 160 | 218 | 218 | _ | _ | 18 | 659 | 28 | 43.5 | 28.5 | 4.5 | 4.5 | M10 | 67 | | 2313 | 4 | 312 | 700 | 420 | 200 | 100 | 210 | 210 | | _ | 10 | 039 | 20 | 43.5 | 20.5 | 4.5 | 4.5 | IVITO | 07 | | 2360 | 5
| 440 | 800 | 472 | 254 | 218 | 370 | 370 | | _ | 20 | 757 | 28 | 44 | 30 | 4.5 | 4.5 | M12 | 104 | | 2415 | 3 | 440 | 000 | 4/2 | 234 | 210 | 370 | 370 | | | 20 | 131 | 20 | 44 | 30 | 4.5 | 4.0 | IVIIZ | 119 | 400 V CI | 400 V Class |--------------|--------|------|------|-----|-----|-----|-----|-----|------|---------|----|------|------|------|------|-----|-----|------|-----------| | Catalog Code | Figure | | | | | | | | Dime | ensions | mm | | | | | | | | Weight kg | | GA70A[]] | riguie | W | Н | D | D1 | D2 | W1 | W2 | W3 | W4 | W5 | H1 | H2 | H3 | H4 | t1 | t2 | d | Weight kg | | 4002 | 4004 | | | | 176 | | 38 | | | | | | | | | | | | | 3.5 | | 4005 | | | | |] | | | | | | | | | | | | | | | | 4007 | | 140 | 260 | | 138 | | 102 | 102 | | | | 248 | 6 | | | | 5 | | | | 4009 | | 140 | 200 | | 130 | | 102 | 102 | | | | 240 | " | | | 1.6 | 3 | M5 | 3.9 | | 4012 | 1 | | | 211 | | 73 | | | _ | _ | _ | | | _ | _ | 1.0 | | IVIO | | | 4018 | ' ' | | | | | | | | | | | | | | | | | | 4.2 | | 4023 | | | | | | | | | | | | | | | | | | | 4.2 | | 4031 | | 180 | 300 | 202 | 134 | 68 | 140 | 140 | | | | 284 | | | | | 1.6 | | 6.0 | | 4038 | | 100 | 000 | | 104 | | 140 | 140 | | | | 204 | 8 | | | | 1.0 | | | | 4044 | | 220 | 350 | 227 | 140 | 87 | 192 | 192 | | | | 335 | " | | | 2.3 | 2.3 | M6 | 7.5 | | 4060 | | | | 246 | | 106 | | | | | | | | | | | | | 12 | | 4075 | 2 | 240 | 400 | 280 | 166 | 114 | 195 | 186 | - | - | 12 | 375 | 17.5 | - | 17.5 | 2.3 | 2.3 | M6 | 17 | | 4089 | | 255 | 450 | 280 | 166 | 114 | 170 | 165 | | | | 424 | 16 | 29 | 21 | 2.3 | 2.3 | M6 | 22 | | 4103 | 3 | | 100 | 200 | 100 | | 170 | 100 | _ | _ | 12 | | | | | 2.0 | | 1410 | 25 | | 4140 | | 264 | 543 | 335 | 186 | 149 | 190 | 182 | | | '- | 516 | 17.5 | 28.5 | 20.5 | 2.3 | 2.3 | M8 | 38 | | 4168 | | | 0.0 | 000 | | | | | | | | 0.0 | | 20.0 | 20.0 | | | | 39 | | 4208 | 4250 | 4 | 312 | 700 | 420 | 260 | 160 | 218 | 218 | - | - | 18 | 659 | 28 | 43.5 | 28.5 | 4.5 | 4.5 | M10 | 71 | | 4296 | 4371 | 5 | 440 | 800 | 472 | 254 | 218 | 370 | 370 | _ | _ | 20 | 757 | 28 | 44 | 30 | 4.5 | 4.5 | M12 | 122 | | 4389 | | . 10 | 550 | | | 0 | 0.0 | 0.0 | | | | . 57 | | | | | | 2 | 126 | | 4453 | | | | | | | | | | | | | | | | | | | 198 | | 4568 | 6 | 510 | 1136 | 480 | 260 | 220 | 450 | 450 | 225 | 225 | 20 | 1093 | 25.5 | 43.5 | 30.5 | 4.5 | 4.5 | M12 | | | 4675 | | | | | | | | | | | | | | | | | | | 207 | Note: External and mounting dimensions are different for standard mounting and panel through mounting. Please refer to P.37 for panel through mounting. #### **Dimensions** #### ■ Enclosure Wall-Mounted 【UL Type1】 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Global Service Network 200 V Class: UL Type 1 | Catalog | | | | | | | | | Dime | ensions | mm | | | | | | | | Weight | UL Type1 Kit | |-----------------|--------|-------|------|-----|-----|-----|-----|-----|------|---------|-----|------|-----|-----|------|-----|------|-------|--------|----------------------------------| | Code
GA70A:: | Figure | W | Н | D | D1 | D2 | W1 | W2 | W3 | H0 | H1 | H2 | Н3 | H4 | H5 | t1 | t2 | d | kg | Code No.
(Model No.) | | 2004 | 2006 | 2008 | | | | 176 | | 38 | | | | | | | | | | | | | 4.1 | | | 2010 | | | | | | | | | | | | _ | | | | | _ | | | 900-192-121-001 | | 2012 | | 140 | 300 | | 138 | | 102 | 102 | | 260 | 248 | 6 | 40 | | | 1.6 | 5 | M5 | | (100-202-326) | | 2018 | | | | | | | | | | | | | | | | 1.0 | | IVIO | 4.5 | | | 2021 | 1 | | | 211 | | 73 | | | _ | | | | | 1.5 | _ | | | | | | | 2042 | | | | | | | | | | | | | | | | | | | 4.8 | | | 2056 | | 180 | 340 | 202 | 134 | 68 | 140 | 140 | | 300 | 284 | | 40 | | | | 1.6 | | 7.0 | 900-192-121-002 | | 2030 | | 100 | 340 | 202 | 134 | 00 | 140 | 140 | | 300 | 204 | | 40 | | | | 1.0 | | 7.0 | (100-202-327) | | 2070 | | | 400 | | | | | | | | | 8 | 50 | | | | | | 9 | 900-192-121-003 | | | | 220 | | 227 | 140 | 87 | 192 | 192 | | 350 | 335 | | | | | 2.3 | 2.3 | M6 | | (100-202-328)
900-192-121-004 | | 2082 | | | 435 | | | | | | | | | | 85 | | | | | | 10 | (100-202-329) | | 0110 | 0 | 0.4.4 | 500 | 000 | 400 | 444 | 405 | 100 | 40 | 400 | 075 | 47.5 | 400 | | 47.5 | 0.0 | 0.0 | 140 | 0.4 | 900-192-121-005 | | 2110 | 2 | 244 | 500 | 280 | 166 | 114 | 195 | 186 | 10 | 400 | 375 | 17.5 | 100 | _ | 17.5 | 2.3 | 2.3 | M6 | 24 | (100-202-330) | | 2138 | | 259 | 580 | 280 | 166 | 114 | 170 | 165 | | 450 | 424 | 16 | 130 | | 21 | | | M6 | 27 | 900-192-121-006 | | 2100 | | | 000 | 200 | 100 | | | 100 | | 100 | | 10 | 100 | | | | | 1410 | | (100-208-526) | | 2169 | 3 | | 700 | | | | | | 10 | | | | 157 | _ | | 2.3 | 2.3 | | 44 | 900-192-121-007 (100-208-527) | | | | 268 | | 335 | 186 | 149 | 190 | 182 | | 543 | 516 | 17.5 | | | 20.5 | | | M8 | | 900-192-121-008 | | 2211 | | | 770 | | | | | | | | | | 227 | | | | | | 46 | (100-208-528) | | 2257 | 4 | 316 | 915 | 420 | 260 | 160 | 218 | 218 | 16 | 700 | 659 | 28 | 215 | _ | 28.5 | 4.5 | 4.5 | M10 | 72 | 900-192-121-009 | | 2313 | 4 | 310 | 913 | 420 | 200 | 100 | 210 | 210 | 10 | 700 | 009 | 20 | 213 | | 20.3 | 4.5 | 4.5 | IVITU | 12 | (100-208-549) | | 2360 | 5 | 444 | 1045 | 472 | 254 | 218 | 370 | 370 | 18 | 800 | 757 | 28 | 245 | _ | 30 | 4.5 | 4.5 | M12 | 113 | 900-192-121-010 | | _300 | , | | | | | | | | | | | | 0 | | | | 1.70 | | | (100-213-136) | 400 V Class: UL Type 1 | Catalog | | | | | | | | Dir | nensio | ns mm | | | | | | | | | Weight | UL Type1 Kit | |----------------------|----------------|-----|------|------------|-----|-----------|-----|-----|--------|-------|-----|------|-----|-----|------|-----|-----|-----|-----------|----------------------------------| | Code
GA70A[] | Figure | W | Н | D | D1 | D2 | W1 | W2 | W3 | H0 | H1 | H2 | Н3 | H4 | H5 | t1 | t2 | d | kg | Code No.
(Model No.) | | 4002
4004
4005 | | | | 176 | | 38 | | | | | | | | | | | | | 4.1 | | | 4007
4009
4012 | | 140 | 300 | 211 | 138 | 73 | 102 | 102 | | 260 | 248 | 6 | 40 | | | 1.6 | 5 | M5 | 4.5 | 900-192-121-001
(100-202-326) | | 4018
4023 | 18
23
31 | | | | | | | | _ | | | | | 1.5 | _ | | | | 4.8 | | | 4031
4038 | | 180 | 340 | 202 | 134 | 68 | 140 | 140 | | 300 | 284 | 8 | 40 | | | | 1.6 | | 7.0 | 900-192-121-002
(100-202-327) | | 4044
4060 | | 220 | 400 | 227
246 | 140 | 87
106 | 192 | 192 | | 350 | 335 | 0 | 50 | | | 2.3 | 2.3 | M6 | 8.5
13 | 900-192-121-003
(100-202-328) | | 4075 | 2 | 244 | 500 | 280 | 166 | 114 | 195 | 186 | 10 | 400 | 375 | 17.5 | 100 | _ | 17.5 | 2.3 | 2.3 | M6 | 20 | 900-192-121-005
(100-202-330) | | 4089
4103 | 3 | 259 | 580 | 280 | 166 | 114 | 170 | 165 | 10 | 450 | 424 | 16 | 130 | | 21 | 2.3 | 2.3 | М6 | 25
29 | 900-192-121-006
(100-208-526) | | 4140
4168 | 3 | 268 | 700 | 335 | 186 | 149 | 190 | 182 | 10 | 543 | 516 | 17.5 | 157 | | 20.5 | 2.3 | 2.3 | M8 | 43
44 | 900-192-121-007
(100-208-527) | | 4208
4250
4296 | 4 | 316 | 915 | 420 | 260 | 160 | 218 | 218 | 16 | 700 | 659 | 28 | 215 | _ | 28.5 | 4.5 | 4.5 | M10 | 76 | 900-192-121-009
(100-208-549) | | 4371 | 5 | 444 | 1045 | 472 | 254 | 218 | 370 | 370 | 18 | 800 | 757 | 28 | 245 | _ | 30 | 4.5 | 4.5 | M12 | 130 | 900-192-121-010
(100-213-136) | Note: UL Type 1 kit (option) is required. The values in the table are the dimensions of the UL Type 1 kit mounted to the IP20 open chassis type. #### Fully-Enclosed Design The Open Chassis type drive can be installed in a fully-enclosed panel. An open chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to 50°C. The heatsink can alternatively be mounted outside the control panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up. #### · Cooling Design for Fully-Enclosed Panel #### · Mounting the External Heatsink Intake air temperature for external heatsink Heatsink side: 50 °C Open chassis side: 50 °C Use only an open chassis type for the external heatsink. #### · Ventilation Space For installing the drive with capacity of 200 V class 22 kW or 400 V class 22 kW, be sure to leave enough clearance during installation for suspension brackets on both side of the unit and main circuit wiring for maintenance. 91 8 237 779 1016 8 184 617 801 #### Drive Watts Loss Data #### 200 V Class Heavy Duty Ratings | Catalog | Code GA70A2 | | 004 | 006 | 800 | 010 | 012 | 018 | 021 | 030 | 042 | 056 | 070 | 082 | 110 | 138 | 169 | 211 | 257 | 313 | 360 | 415 | |-----------|-----------------------|---|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Rated O | utput Current | Α | 3.2 | 5 | 6.9 | 8 | 11 | 14 | 17.5 | 25 | 33 | 47 | 60 | 75 | 88 | 115 | 145 | 180 | 215 | 283 | 346 | 415 | | Carrier F | Carrier Frequency k | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 5 | 5 | 5 | 5 | 5 | 5 | | Llast | Internal | W | 35 | 37 | 40 | 44 | 50 | 47 | 56 | 74 | 88 | 112 | 145 | 179 | 155 | 212 | 275 | 314 | 398 | 502 | 582 | 644 | | | Heat Heatsink | | 18 | 26 | 36 | 43 | 61 | 82 | 105 | 174 | 183 | 267 | 373 | 478 | 563 | 680 | 820 | 991 | 1252 | 1643 | 1978 | 2359 | | LOSS* | Loss* Total Heat Loss | | 53 | 63 | 76 | 87 | 111 | 129 | 161 | 248 | 271 | 379 | 518 | 657 | 718 | 892 | 1095 | 1305 | 1650 | 2145 | 2560 | 3003 | #### 400 V Class Heavy Duty Ratings | Catalog | Code GA70A4 | | 002 | 004 | 005 | 007 | 009 | 012 | 018 | 023 | 031 | 038 | 044 | 060 | 075 | | |-----------|-----------------|-----|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|---| | Rated O | Output Current | Α | 1.8 | 3.4 | 4.8 | 5.5 | 7.2 | 9.2 | 14.8 | 18 | 24 | 31 | 39 | 45 | 60 | ĺ | | Carrier F | Frequency | kHz | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | ĺ | | Heat |
Internal | W | 38 | 42 | 46 | 48 | 37 | 46 | 65 | 73 | 101 | 119 | 148 | 126 | 165 | ĺ | | Loss* | Heatsink | W | 15 | 28 | 37 | 45 | 61 | 82 | 140 | 150 | 211 | 272 | 354 | 389 | 527 | Ī | | LOSS | Total Heat Loss | W | 53 | 70 | 83 | 93 | 98 | 128 | 205 | 223 | 312 | 391 | 502 | 515 | 692 | | | Catalog | Code GA70A4 | | 140 | 168 | 208 | 250 | 296 | 371 | 414 | 453 | 568 | 675 | | | | | | Rated O | Output Current | Α | 112 | 150 | 180 | 216 | 260 | 304 | 371 | 414 | 453 | 605 | | | | | | Carrier F | Frequency | kHz | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | | | | | | Heat | Internal | W | 300 | 486 | 446 | 558 | 692 | 824 | 777 | 963 | 1086 | 1328 | | | | | | Loss* | Heatsink | W | 956 | 1274 | 1432 | 1464 | 2061 | 2346 | 2212 | 2696 | 3035 | 3995 | | | | | | LOSS | Total Heat Loss | W | 1256 | 1760 | 1878 | 2022 | 2753 | 3170 | 2989 | 3659 | 4121 | 5323 | | | | | #### 200 V Class Normal Duty Ratings | Catalog | Code GA70A2 | | 004 | 006 | 800 | 010 | 012 | 018 | 021 | 030 | 042 | 056 | 070 | 082 | 110 | 138 | 169 | 211 | 257 | 313 | 360 | |-----------|-----------------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Rated O | utput Current | Α | 3.5 | 6 | 8 | 9.6 | 12.2 | 17.5 | 21 | 30 | 42 | 56 | 70 | 82 | 110 | 138 | 169 | 211 | 257 | 313 | 360 | | Carrier F | requency | kHz | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Llant | Internal | W | 35 | 38 | 42 | 49 | 56 | 53 | 75 | 95 | 129 | 149 | 177 | 202 | 192 | 269 | 338 | 384 | 519 | 579 | 655 | | Heat | Heatsink | W | 16 | 25 | 34 | 46 | 62 | 88 | 125 | 206 | 227 | 302 | 403 | 467 | 631 | 814 | 941 | 1131 | 1534 | 1794 | 2071 | | Loss* | Total Heat Loss | W | 51 | 63 | 76 | 95 | 118 | 141 | 200 | 301 | 356 | 451 | 580 | 669 | 823 | 1083 | 1279 | 1515 | 2053 | 2373 | 2726 | #### 400 V Class Normal Duty Ratings | Catalog | Code GA70A4 | 002 | 004 | 005 | 007 | 009 | 012 | 018 | 023 | 031 | 038 | 044 | 060 | 075 | 089 | 103 | |-----------|-----------------------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------| | Rated O | output Current A | 2.1 | 4.1 | 5.4 | 7.1 | 8.9 | 11.9 | 17.5 | 23.4 | 31 | 38 | 44 | 59.6 | 74.9 | 89.2 | 103 | | Carrier F | requency kHz | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Llast | Internal W | 39 | 44 | 48 | 52 | 42 | 57 | 82 | 108 | 138 | 145 | 168 | 157 | 185 | 212 | 264 | | Heat | Heatsink W | 16 | 33 | 31 | 44 | 58 | 84 | 144 | 185 | 222 | 270 | 335 | 444 | 527 | 665 | 766 | | Loss* | Total Heat Loss W | 55 | 77 | 79 | 96 | 100 | 141 | 226 | 293 | 360 | 415 | 503 | 601 | 712 | 877 | 1030 | | Catalog | Code GA70A4 | 140 | 168 | 208 | 250 | 296 | 371 | 389 | 453 | 568 | 675 | | | | | | | Rated O | output Current A | 140 | 168 | 208 | 250 | 296 | 371 | 389 | 453 | 568 | 675 |] | | | | | | Carrier F | Carrier Frequency kHz | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | | | | | Llast | Internal W | 393 | 574 | 493 | 686 | 805 | 1022 | 867 | 1086 | 1429 | 1526 |] | | | | | | Heat | 11 11 1 | 1100 | 1010 | 4405 | 4700 | 0455 | 0550 | 0000 | 0005 | 0000 | 4570 | i | | | | | 2553 3575 2393 3260 3035 4121 3989 5418 4572 Heatsink Total Heat Loss 1126 W 1519 1348 1922 1465 1958 1738 2424 2155 2960 Heat loss is calculated in the following conditions: ^{· 200} V class: Input voltage 220 V, power frequency 60 Hz, load ratio 100% · 400 V class: Input voltage 440 V, power frequency 60 Hz, load ratio 100% Contact your Yaskawa or nearest agent when not calculating heat loss in the above conditions. ### Attachment for External Heatsink When the heatsink is installed outside the drive, additional attachments are required. Additional attachments are not required for models GA70A2110 and above, and GA70A4075 and above because installing a heatsink outside the drive can be performed on these models by replacing their standard mounting feet. Contact Yaskawa if an instruction ### Panel Modification for External Heatsink Panel cut out dimensions Note: The shaded area is the size when in installing the gasket. Guarantee a wider and higher gasket width space than the following W and H information. ### 200 V Class manual is needed. | Catalog | | | | | | | | Dimensi | ons mr | 1 | | | | | | | Attachment for External | |----------------|-----|-----|-----|-----|-----|-----|------|---------|--------|------|-----|------|-----|-----|------|-------|----------------------------------| | Code
GA70[] | W | Н | D1 | D2 | W1 | W2 | W3 | W4 | H1 | H2 | НЗ | H4 | H5 | Α | В | d1 | Heatsink Code No.
(Model No.) | | 2004 | | | | | | | | | | | | | | | | | | | 2006 | | | | | | | | | | | | | | | | | | | 2008 | | | | 38 | | | | | | | | | | | | | | | 2010 | | | | | | | | | | | | | | | | | 900-193-209-001 | | 2012 | 140 | 294 | 138 | | 102 | 102 | 16 | 3 | 282 | 23 | 6 | 26 | 6 | 134 | 233 | M5 | (100-203-229) | | 2018 | | | | | | | | | | | | | | | | | (100 200 220) | | 2021 | | | | 73 | | | | | | | | | | | | | | | 2030 | | | | / 3 | | | | | | | | | | | | | | | 2042 | | | | | | | | | | | | | | | | | | | 2056 | 180 | 329 | 134 | 68 | 140 | 140 | 17 | 3 | 318 | 23.5 | 5 | 24.5 | 6 | 174 | 270 | M5 | 900-193-209-002
(100-203-230) | | 2070
2082 | 220 | 384 | 140 | 87 | 192 | 192 | 11 | 3 | 371 | 27 | 7 | 25 | 6 | 214 | 319 | M6 | 900-193-209-003
(100-203-231) | | 2110 | 240 | 400 | 166 | 114 | 195 | 204 | 14.5 | 8 | 385 | 19.5 | 7.5 | 19.5 | 7.5 | 224 | 346 | M6 | _ | | 2138 | 255 | 450 | 166 | 114 | 170 | 210 | 34.5 | 8 | 436 | 20 | 8 | 20 | 6 | 239 | 396 | M6 | _ | | 2169 | 264 | 543 | 186 | 149 | 190 | 220 | 29 | 8 | 527 | 19.5 | 8.5 | 20.5 | 7.5 | 248 | 487 | M8 | | | 2211 | 204 | 343 | 100 | 149 | 190 | 220 | 29 | 0 | 327 | 19.5 | 6.5 | 20.5 | 7.5 | 240 | 407 | IVIO | _ | | 2257 | 312 | 700 | 260 | 160 | 218 | 263 | 39 | 8 | 675 | 33 | 12 | 32 | 13 | 296 | 610 | M10 | <u> </u> | | 2313 | 312 | 700 | 200 | 100 | 210 | 203 | 39 | 0 | 0/3 | 55 | 12 | 32 | 13 | 230 | 010 | IVITO | | | 2360 | 440 | 800 | 254 | 218 | 370 | 310 | 23 | 12 | 773 | 31.5 | 14 | 31.5 | 13 | 416 | 710 | M12 | _ | | 2415 | 140 | 000 | 204 | 210 | 370 | 510 | 23 | 12 | 173 | 51.5 | 14 | 51.5 | 13 | 410 | , 10 | IVITZ | _ | | 400 V Clas | | | | | | | | С | imensi | ons mr | n | | | | | | | | Attachment for External | |-----------------|-----|------|-----|-----|-----|-----|------|----|--------|--------|------|------|-----|------|-----|-----|------|-------|----------------------------------| | Code
GA70[]] | W | Н | D1 | D2 | W1 | W2 | W3 | W4 | W5 | W6 | H1 | H2 | НЗ | H4 | H5 | Α | В | d1 | Heatsink Code No.
(Model No.) | | 4002 | 4004 | | | | 38 | | | | | | | | | | | | | | | | | 4005 | 4007 | 140 | 294 | 138 | | 102 | 102 | 16 | 3 | _ | _ | 282 | 23 | 6 | 26 | 6 | 134 | 233 | M5 | 900-193-209-001 | | 4009 | | | | | | | | - | | | | | _ | | • | | | | (100-203-229) | | 4012 | | | | 73 | | | | | | | | | | | | | | | | | 4018
4023 | 4023 | | | | | | | | | | | | | | | | | | | 900-193-209-002 | | 4031 | 180 | 329 | 134 | 68 | 140 | 140 | 17 | 3 | _ | _ | 318 | 23.5 | 5 | 24.5 | 6 | 174 | 270 | M5 | (100-203-230) | | 4044 | | | | 87 | | | | | | | | | | | | | | | 900-193-209-003 | | 4060 | 220 | 384 | 140 | 106 | 192 | 192 | 11 | 3 | _ | _ | 371 | 27 | 7 | 25 | 6 | 214 | 319 | M6 | (100-203-231) | | 4075 | 240 | 400 | 166 | 114 | 195 | 204 | 14.5 | 8 | _ | _ | 385 | 19.5 | 7.5 | 19.5 | 7.5 | 224 | 346 | M6 | _ | | 4089 | 255 | 450 | 166 | 111 | 170 | 010 | 34.5 | 8 | _ | | 400 | 00 | 8 | 20 | 6 | 239 | 206 | MC | | | 4103 | 200 | 450 | 100 | 114 | 170 | 210 | 34.5 | 0 | | | 436 | 20 | 0 | 20 | О | 239 | 396 | M6 | _ | | 4140 | 264 | 543 | 186 | 149 | 190 | 220 | 29 | 8 | _ | _ | 527 | 19.5 | 8.5 | 20.5 | 7.5 | 248 | 487 | M8 | _ | | 4168 | 204 | 040 | 100 | 143 | 130 | 220 | 23 | 0 | | | 521 | 13.5 | 0.0 | 20.5 | 7.5 | 240 | 407 | IVIO | | | 4208 | 4250 | 312 | 700 | 260 | 160 | 218 | 263 | 39 | 8 | _ | _ | 675 | 33 | 12 | 32 | 13 | 296 | 610 | M10 | _ | | 4296 | 4371 | 440 | 800 | 254 | 218 | 370 | 310 | 23 | 12 | _ | _ | 773 | 31.5 | 14 | 31.5 | 13 | 416 | 710 | M12 | _ | | 4389
4453 | 4453
4568 | 510 | 1140 | 260 | 220 | 450 | 404 | 18 | 12 | 179 | 225 | 1110 | 34 | 15 | 34 | 15 | 486 | 1042 | M12 | _ | | 4675 | 310 | 1140 | 200 | 220 | 430 | 404 | 10 | 12 | 179 | 223 | 1110 | 34 | 13 | 34 | 13 | 400 | 1042 | IVITZ | _ | # Peripheral Devices and Options | Name | Purpose | Model, Manufacturer | Page | |--|--|---|--------------| | Ground Fault Interrupter
(GFI) | Always install a GFI on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of shortcircuit, and to protect the drive from ground faults that could result in electric shock or fire. Note: When a GFI is installed for the upper power supply system, an MCCB can be used instead of a GFI. Choose a GFI designed to minimize harmonics specific fally for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA. | NV series* by
Mitsubishi Electric
Corporation | P.40 | | Circuit Breaker | Always install a circuit
breaker on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit. | NF series* by
Mitsubishi
Electric Corporation | P.40 | | Magnetic Contactor | Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used. | SC series* by Fuji
Electric FA
Components &
Systems Co., Ltd | P.41 | | AC Reactor | Improve the input power ratio of the drive. The DC reactor is built in for models of catalog codes GA70 □ 2110 and above, and GA70 □ 4060 and above. (The DC reactor is optional for models of catalog codes GA70 □ 2082 and below, and GA70 □ 4044 and below.) | UZBA series | P.42 | | DC Reactor | Used for harmonic current suppression and total improving power factor. Should be used if the power supply capacity is larger than 600 kVA. Suppresses harmonic current Improves the power factor of the input power supply | UZDA series | P.44 | | Zero Phase Reactor | Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides. | F6045GB
F11080GB
by Hitachi Metals,
Ltd. | P.45 | | Fuse / Fuse Holder | Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval. | FWH series
by BUSSMANN | P.46 | | Capacitor-Type Noise
Filter | Reduces noise from the line that enters into the drive input power system. The noise fi Iter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals. | 3XYG 1003
by Okaya Electric
Industries Co., Ltd. | P.51 | | Input Noise Filter | Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Note: For CE Marking (EMC Directive) compliant models, refer to GA700 Technical Manual. | LNFD series
LNFB series
FN series | P.48 | | Output Noise Filter | Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. | LF series by NEC
Tokin Corporation | P.50 | | Braking Resistor | Used to shorten the deceleration time by dissipating regenerative energy through a resistor. Usage 3% ED, requires a separate attachment. | ERF-150WJ series
CF120-B579 series | P.52 | | Attachment for Braking Resistor | A braking resistor can be attached to the drive. | 900-192-126-001 | P.57 | | External Heatsink
Attachment for Braking Unit | Use the external heatsink attachment for installation with the heatsink outside the enclosure. | EZZ021711A | P.57 | | Braking Resistor Unit | Used to shorten the deceleration time by dissipating regenerative energy through a resistor unit (10% ED). A thermal overload relay is built in (10% ED). | LKEB series | P.52 | | Braking Unit | Shortened deceleration time results when used with a Braking Resistor Unit. | CDBR series | P.52 | | PC cable | Connect the drive and PC when using DriveWizard or DriveWorksEZ. The cable length must be 3 m or less. | Commercially available USB2.0 A-miniB cable. | P.59 | | LED Keypad | For easier operation using the LED screen when connecting the optional LED Keypad to the drive. Allows for remote operation. Includes a Copy function for saving drive settings. | JVOP-
KPLEA04AAA | P.58 | | Bluetooth LCD Keypad | Bluetooth connection enables the drive to be operated from a smartphone. | JVOP-
KPLCC04AAA | P.58 | | Keypad Extension Cable | It is used as an extension cable when operating the keypad remotely. | WV001: 1 m
WV003: 3 m | P.58 | | Momentary Power Loss
Recovery Unit | Ensures continuous drive operation for a power loss of up to 2 s. | P0010 Type (200 V class)
P0020 Type (400 V class) | P.51 | | Frequency Meter, Current Meter Frequency Setting Potentiometer (2 k Ω) | | DCF-6A
RV30YN20S 2 kΩ | P.60 | | Frequency Meter Adjusting Potentiometer (20 kΩ) | Allows the user to set and monitor the frequency, current, and voltage using an external device. | RV30YN20S 20 kΩ | P.60 | | Control Dial for
Frequency Setting
Potentiometer | and voltage using an external device. | CM-3S | P.60 | | | | SCF-12NH | P.61 | | Output Voltage Meter | | LIDNI D | | | Output Voltage Meter Potential Transformer Attachment for External Heatsink | Required for heatsink installation. Current derating may be needed when using a heatsink. | UPN-B | P.61
P.37 | ^{*:} Recommended by Yaskawa. Contact the manufacturer in question for availability and specifications of non-Yaskawa products. Ground ### Option Cards RoHS compliant. Shipment of factory installed option is available. Contact Yaskawa. | Туре | Name | Model | Function | Manual No. | |----------------------------|---|---------|---|--------------------------------| | rence Card | Analog Input | AI-A3 | Enables high-precision and high-resolution analog speed reference setting. Input signal level: –10 to +10 Vdc (20 kΩ), 4 to 20 mA (250 Ω) Input channels: 3 channels, DIP switch for input voltage/input current selection Input resolution: Input voltage 13 bit signed (1/8192) Input current 1/4096 | TOBPC73060078 | | Speed Reference Card | Digital Input | DI-A3 | Enables 16-bit digital speed reference setting. Input signal: 16 bit binary, 2 digit BCD +sign signal +set signal Input voltage: 24 V (isolated) Input current: 8 mA User-set: 8 bit, 12 bit, 16 bit | TOBPC73060080 | | | MECHATROLINK- II | SI-T3 | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK- II communication with the host controller. | TOBPC73060086 | | | Interface | 01 10 | Note: Use options with software versions of 6108 or later. | SIEPC73060086 | | | MECHATROLINK-Ⅲ
Interface | SI-ET3 | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK- communication with the host controller. Note: Use options with software versions of 6202 or later. | TOBPC73060088
SIEPC73060088 | | ırd | CC-Link Interface | SI-C3 | Used for running or stopping the drive, setting or referencing parameters, and monitoring output | TOBPC73060083 | | Communications Option Card | DeviceNet Interface | SI-N3 | frequency, output current, or similar items through CC-Link communication with the host controller. Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through DeviceNet communication with the host controller. | SIEPC73060083
TOBPC73060084 | | ns O | | | Note: Use options with software versions of 1114 or later. Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, | SIEPC73060084
TOBPC73060082 | | catio | PROFIBUS-DP Interface | SI-P3 | output current, or similar items through PROFIBUS-DP communication with the host controller. | SIEPC73060082 | | nmuni | CANopen Interface | SI-S3 | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CANopen communication with the host controller. | TOBPC73060085
SIEPC73060085 | | Cor | EtherCAT Interface | SI-ES3* | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through EtherCAT communication with the host controller. | - | | | EtherNet/IP Interface | SI-EN3* | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through EtherNet/IP communication with the host controller. | - | | | Modbus TCP/IP Interface | SI-EM3* | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through Modbus TCP/IP communication with the host controller. | - | | | PROFINET Interface | SI-EP3* | Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through PROFINET communication with the host controller. | - | | Monitor Option Card | Analog Monitor | AO-A3 | Outputs analog signal for monitoring drive output state (output freq., output current etc.). Output resolution: 11 bit signed (1/2048) Output voltage: -10 to +10 Vdc (non-isolated) Terminals: 2 analog outputs | TOBPC73060079 | | Monitor (| Digital Output | DO-A3 | Outputs isolated type digital signal for monitoring drive run state (alarm signal, zero speed detection, etc.) Terminals: 6 photocoupler outputs (48 V, 50 mA or less) 2 relay contact outputs (250 Vac, 1 A or less 30 Vdc, 1 A or less) | TOBPC73060081 | | | Complimentary Type PG | PG-B3 | For control modes requiring a PG encoder for motor feedback. Phase A, B, and Z pulse (3-phase) inputs (complementary type) Max.
input frequency: 50 kHz Pulse monitor output: Open collector, 24 V, max. current 30 mA Power supply output for PG: 12 V, max. current 200 mA Note: Not available in Advanced Open Loop Vector for PM. | TOBPC73060075 | | | Line Driver PG | PG-X3 | For control modes requiring a PG encoder for motor feedback or PM motor feedback. Phase A, B, and Z pulse (differential pulse) inputs (RS-422) Max. input frequency: 300 kHz Pulse monitor output: RS-422 Power supply output for PG: 5 V or 12 V, max. current 200 mA | TOBPC73060076 | | PG Speed Controller Card | Motor Encoder
Feedback (EnDat,
HIPERFACE) Interface | PG-F3 | For control modes requiring a PG encoder for PM motor feedback. Encoder type: EnDat 2.1/01, EnDat 2.2/01, and EnDat 2.2/22 (HEIDENHAIN), HIPERFACE (SICK STEGMANN) Maximum input frequency: 20 kHz (Used with low-speed gearless motors.) Note: EnDat 2.2/22 does not have maximum input frequency. Wiring length: 20 m max. for the encoder, 30 m max. for the pulse monitor Pulse monitor: Matches RS-422 level Note: EnDat 2.2/22 is not available. [Encoder power supply: 5 V, max current 330 mA or 8 V, max current 150 mA] Use one of the following encoder cables. EnDat2.1/01, EnDat2.2/01: 17-pin cable from HEIDENHAIN EnDat2.2/22 : 8-pin cable from HEIDENHAIN HIPERFACE : 8-pin cable from SICK STEGMANN | TOBPC73060077 | | * Con | Resolver Interface for TS2640N321E64 | PG-RT3 | For control modes requiring a PG encoder for motor feedback or PM motor feedback. Can be connected to the TS2640N321E64 resolver made by Tamagawa Seiki Co., Ltd. and electrically compatible resolvers. The representative electrical characteristics of the TS2640N321E64 are as follows. Input voltage: 7 Vac rms 10 kHz Transformation ratio: 0.5 ± 5% maximum input current: 100 mArms Wiring length: 10 m max. (100 m max. for the SS5 and SS7 series motor manufactured by Yaskawa Motor Co.,, and PG cables manufactured by Yaskawa Controls Co., Ltd.) | TOBPC73060087 | Contact Yaskawa for EtherCAT Modbus TCP/IP and PROFINET. ^{2.} PG speed controller card is required for PG control. ### Ground Fault Interrupter, Circuit Breaker Device selection is based on the motor capacity. Make sure that the rated breaking capacity is higher than the shortcircuit current for the power supply. Protect the wiring to withstand the short-circuit current for the power supply using a combination of fuses if the rated breaking capacity of the circuit breaker or ground fault interrupter is insufficient, such as when the power transformer capacity is large. Ground Fault Interrupter [Mitsubishi Electric Corporation] Circuit Breaker [Mitsubishi Electric Corporation] #### 200 V Class | | | | Ground Fau | It Interrupter | | | | | Circuit | Breaker | | | |------------------|----------|-------------------------|---|----------------|-------------------------|---|----------|-------------------------|---|----------|-------------------------|---| | Motor | Wit | thout React | tor*1 | V | /ith Reacto | r*1 | Wit | thout Reac | tor*1 | V | /ith Reacto | r*1 | | Capacity
(kW) | Model | Rated
Current
(A) | Interrupt
Capacity
(kA) Icu/Ics*2 | | 0.4 | NV32-SV | 5 | 10/10 | NV32-SV | 5 | 10/10 | NF32-SV | 5 | 7.5/7.5 | NF32-SV | 5 | 7.5/7.5 | | 0.75 | NV32-SV | 10 | 10/10 | NV32-SV | 10 | 10/10 | NF32-SV | 10 | 7.5/7.5 | NF32-SV | 10 | 7.5/7.5 | | 1.1
1.5 | NV32-SV | 15 | 10/10 | NV32-SV | 10 | 10/10 | NF32-SV | 15 | 7.5/7.5 | NF32-SV | 10 | 7.5/7.5 | | 2.2 | NV32-SV | 20 | 10/10 | NV32-SV | 15 | 10/10 | NF32-SV | 20 | 7.5/7.5 | NF32-SV | 15 | 7.5/7.5 | | 3 3.7 | NV32-SV | 30 | 10/10 | NV32-SV | 20 | 10/10 | NF32-SV | 30 | 7.5/7.5 | NF32-SV | 20 | 7.5/7.5 | | 5.5 | NV63-SV | 50 | 15/15 | NV63-SV | 40 | 15/15 | NF63-SV | 50 | 15/15 | NF63-SV | 40 | 15/15 | | 7.5 | NV125-SV | 60 | 50/50 | NV63-SV | 50 | 15/15 | NF125-SV | 60 | 50/50 | NF63-SV | 50 | 15/15 | | 11 | NV125-SV | 75 | 50/50 | NV125-SV | 75 | 50/50 | NF125-SV | 75 | 50/50 | NF125-SV | 75 | 50/50 | | 15 | NV250-SV | 125 | 85/85 | NV125-SV | 100 | 50/50 | NF250-SV | 125 | 85/85 | NF125-SV | 100 | 50/50 | | 18.5 | NV250-SV | 150 | 85/85 | NV250-SV | 125 | 85/85 | NF250-SV | 150 | 85/85 | NF250-SV | 125 | 85/85 | | 22 | _ | - | _ | NV250-SV | 150 | 85/85 | _ | _ | _ | NF250-SV | 150 | 85/85 | | 30 | _ | _ | _ | NV250-SV | 175 | 85/85 | _ | _ | _ | NF250-SV | 175 | 85/85 | | 37 | _ | _ | _ | NV250-SV | 225 | 85/85 | _ | _ | _ | NF250-SV | 225 | 85/85 | | 45 | _ | _ | _ | NV400-SW | 250 | 85/85 | _ | _ | _ | NF400-CW | 250 | 50/25 | | 55 | _ | _ | _ | NV400-SW | 300 | 85/85 | _ | _ | _ | NF400-CW | 300 | 50/25 | | 75 | _ | _ | _ | NV400-SW | 400 | 85/85 | _ | _ | _ | NF400-CW | 400 | 50/25 | | 90 | - | - | _ | NV630-SW | 500 | 85/85 | - | _ | _ | NF630-CW | 500 | 50/25 | | 110 | _ | - | _ | NV630-SW | 600 | 85/85 | _ | _ | _ | NF630-CW | 600 | 50/25 | ^{*1:} The AC or DC reactor is connected to the drive. *2: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity Note: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor. ### 400 V Class | | | | Ground Fau | It Interrupter | | | | | Circuit I | Breaker | | | |------------------|----------|-------------------------|---|----------------|-------------------------|---|----------|-------------------------|---|-----------|-------------------------|---| | Motor | Wit | hout React | :or*1 | V | /ith Reacto | r*1 | Wit | thout React | :or*1 | V | ith Reacto | r*1 | | Capacity
(kW) | Model | Rated
Current
(A) | Interrupt
Capacity
(kA) Icu/Ics*2 | | 0.4 | NV32-SV | 5 | 5/5 | NV32-SV | 5 | 5/5 | NF32-SV | 3 | 2.5/2.5 | NF32-SV | 3 | 2.5/2.5 | | 0.75 | NV32-SV | 5 | 5/5 | NV32-SV | 5 | 5/5 | NF32-SV | 5 | 2.5/2.5 | NF32-SV | 5 | 2.5/2.5 | | 1.5 | NV32-SV | 10 | 5/5 | NV32-SV | 10 | 5/5 | NF32-SV | 10 | 2.5/2.5 | NF32-SV | 10 | 2.5/2.5 | | 2.2 | NV32-SV | 15 | 5/5 | NV32-SV | 10 | 5/5 | NF32-SV | 15 | 2.5/2.5 | NF32-SV | 10 | 2.5/2.5 | | 3.7 | NV32-SV | 20 | 5/5 | NV32-SV | 15 | 5/5 | NF32-SV | 20 | 2.5/2.5 | NF32-SV | 15 | 2.5/2.5 | | 5.5 | NV32-SV | 30 | 5/5 | NV32-SV | 20 | 5/5 | NF32-SV | 30 | 2.5/2.5 | NF32-SV | 20 | 2.5/2.5 | | 7.5 | NV32-SV | 30 | 5/5 | NV32-SV | 30 | 5/5 | NF32-SV | 30 | 2.5/2.5 | NF32-SV | 30 | 2.5/2.5 | | 11 | NV63-SV | 50 | 7.5/7.5 | NV63-SV | 40 | 7.5/7.5 | NF63-SV | 50 | 7.5/7.5 | NF63-SV | 40 | 7.5/7.5 | | 15 | NV125-SV | 60 | 25/25 | NV63-SV | 50 | 7.5/7.5 | NF125-SV | 60 | 25/25 | NF63-SV | 50 | 7.5/7.5 | | 18.5 | NV125-SV | 75 | 25/25 | NV125-SV | 60 | 25/25 | NF125-SV | 75 | 25/25 | NF125-SV | 60 | 25/25 | | 22 | _ | _ | _ | NV125-SV | 75 | 25/25 | _ | _ | - | NF125-SV | 75 | 25/25 | | 30 | - | _ | _ | NV125-SV | 100 | 25/25 | _ | _ | - | NF125-SV | 100 | 25/25 | | 37 | - | _ | _ | NV250-SV | 125 | 36/36 | _ | _ | - | NF250-SV | 125 | 36/36 | | 45 | _ | _ | _ | NV250-SV | 150 | 36/36 | _ | _ | - | NF250-SV | 150 | 36/36 | | 55 | _ | _ | _ | NV250-SV | 175 | 36/36 | _ | _ | _ | NF250-SV | 175 | 36/36 | | 75 | _ | _ | _ | NV250-SV | 225 | 36/36 | _ | _ | _ | NF250-SV | 225 | 36/36 | | 90 | _ | _ | _ | NV400-SW | 250 | 42/42 | _ | - | _ | NF400-CW | 250 | 25/13 | | 110 | _ | _ | _ | NV400-SW | 300 | 42/42 | _ | _ | _ | NF400-CW | 300 | 25/13 | | 132 | _ | _ | _ | NV400-SW | 350 | 42/42 | _ | _ | _ | NF400-CW | 350 | 25/13 | | 160 | _ | _ | _ | NV400-SW | 400 | 42/42 | _ | _ | _ | NF400-CW | 400 | 25/13 | | 200 | _ | _ | _ | NV630-SW | 500 | 42/42 | _ | _ | _ | NF600-CW | 630 | 36/18 | | 220 | _ | _ | _ | NV630-SW | 630 | 42/42 | _ | _ | _ | NF600-CW | 630 | 36/18 | | 250 | _ | _ | _ | NV630-SW | 630 | 42/42 | _ | _ | - | NF600-CW | 630 | 36/18 | | 315 | _ | _ | _ | NV800-SEW | 800 | 42/42 | | _ | _ | NF800-CEW | 800 | 36/18 | | 355 | _ | _ | - | NV800-SEW | 800 | 42/42 | _ | _ | - | NF800-CEW | 800 | 36/18 | ^{*1:} The AC or DC reactor is connected to the drive. *2: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity Note: 400 V models 22 kW and above come with a built-in DC reactor that improves the power factor. ### Magnetic Contactor Base device selection on motor capacity. Magnetic Contactor [Fuji Electric FA Components & Systems Co., Ltd] Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals. ### 200 V Class | Motor Capacity | Without | Reactor* | With R | eactor* | |----------------|---------|-------------------|--------|-------------------| | (kW) | Model | Rated Current (A) | Model | Rated Current (A) | | 0.4 | SC-03 | 11 | SC-03 | 11 | | 0.75 | SC-05 | 13 | SC-03 | 11 | | 1.1 | SC-4-0 | 18 | SC-05 | 13 | | 1.5 | SC-4-0 | 18 | SC-05 | 13 | | 2.2 | SC-N1 | 26 | SC-4-0 | 18 | | 3 | SC-N2 | 35 | SC-N1 | 26 | | 3.7 | SC-N2 | 35 | SC-N1 | 26 | | 5.5 | SC-N2S | 50 | SC-N2 | 35 | | 7.5 | SC-N3 | 65 | SC-N2S | 50 | | 11 | SC-N4 | 80 | SC-N4 | 80 | | 15 | SC-N5A | 93 | SC-N4 | 80 | | 18.5 | SC-N5 | 93 | SC-N5 | 93 | | 22 | - | _ | SC-N6 | 125 | | 30 | - | _ | SC-N7 | 152 | | 37 | _ | _ | SC-N8 | 180 | | 45 | _ | - | SC-N10 | 220 | | 55 | _ | _ | SC-N11 | 300 | | 75 | _ | _ | SC-N12 | 400 | | 90 | _ | _ | SC-N12 | 400 | | 110 | _ | _ | SC-N14 | 600 | Note: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor. ### 400 V Class | Motor Capacity | Without | Reactor* | With R | eactor* | |----------------|---------|-------------------|--------|-------------------| | (kW) | Model | Rated Current (A) | Model | Rated Current (A) | | 0.4 | SC-03 | 7 | SC-03 | 7 | | 0.75 | SC-03 | 7 | SC-03 | 7 | | 1.5 | SC-05 | 9 | SC-05 | 9 | | 2.2 | SC-4-0 | 13 | SC-4-0 | 13 | | 3 | SC-4-1 | 17 | SC-4-1 | 17 | | 3.7 |
SC-4-1 | 17 | SC-4-1 | 17 | | 5.5 | SC-N2 | 32 | SC-N1 | 25 | | 7.5 | SC-N2S | 48 | SC-N2 | 32 | | 11 | SC-N2S | 48 | SC-N2S | 48 | | 15 | SC-N3 | 65 | SC-N2S | 48 | | 18.5 | SC-N3 | 65 | SC-N3 | 65 | | 22 | _ | _ | SC-N4 | 80 | | 30 | _ | _ | SC-N4 | 80 | | 37 | _ | _ | SC-N5 | 90 | | 45 | _ | _ | SC-N6 | 110 | | 55 | _ | _ | SC-N7 | 150 | | 75 | _ | _ | SC-N8 | 180 | | 90 | _ | _ | SC-N10 | 220 | | 110 | _ | _ | SC-N11 | 300 | | 132 | _ | _ | SC-N11 | 300 | | 160 | _ | _ | SC-N12 | 400 | | 200 | _ | _ | SC-N12 | 400 | | 220 | _ | _ | SC-N14 | 600 | | 250 | _ | _ | SC-N14 | 600 | | 315 | _ | _ | SC-N16 | 800 | | 355 | _ | _ | SC-N16 | 800 | * The AC or DC reactor is connected to the drive. Note: 400 V models 22 kW and above come with a built-in DC reactor that improves the power factor. ### AC Reactor (UZBA-B for 50/60 Hz Input) Base device selection on motor capacity. ### Lead Wire Type ### Connection Diagram ### Dimensions (mm) Figure 1 Figure 2 Figure 3 ### 200 V Class | Motor | Current | Inductance | Code No. | Eiguro | Figure Dimensions (mm) A B B1 C D F F H I J K I M | | | | | | | | | | | | Weight | Watt Loss | | |---------------|---------|------------|----------|--------|---|-----|-------|-----|-----|-----|-----|----|-----|-------|------|----|--------|-----------|-----| | Capacity (kW) | (A) | (mH) | Code No. | rigure | Α | В | B1 | С | D | Е | F | Н | | J | K | L | М | (kg) | (W) | | 3 | 20 | 0.53 | X002491 | | | | 114 | | | | | | | | 11.5 | | | | 35 | | 3.7 | 20 | 0.55 | 7002491 | | 130 | 88 | 114 | 105 | 50 | 70 | 130 | 22 | 3.2 | M6 | 11.5 | 7 | M5 | 3 | 33 | | 5.5 | 30 | 0.35 | X002492 | | 130 | | 119 | 105 | 30 | | 130 | 22 | 3.2 | IVIO | 9 | ' | | | 45 | | 7.5 | 40 | 0.265 | X002493 | | | 98 | 139 | | | 80 | | | | | 11.5 | | M6 | 4 | 50 | | 11 | 60 | 0.18 | X002495 | | 160 | 105 | 147.5 | 130 | 75 | 85 | 160 | 25 | 2.3 | M6 | 10 | 7 | M6 | 6 | 65 | | 15 | 80 | 0.13 | X002497 | | | | 155 | | | | | | | | | | M8 | | 75 | | 18.5 | 90 | 0.12 | X002498 | 1 | 180 | 100 | 150 | 150 | 75 | 80 | 180 | 25 | 2.3 | M6 | 10 | 7 | M8 | 8 | 90 | | 22 | 120 | 0.09 | X002555 | | | | 155 | | | | | | | | | | M10 | | 90 | | 30 | 160 | 0.07 | X002556 | | 210 | 100 | 170 | 175 | 75 | 80 | 205 | 25 | 3.2 | M6 | 10 | 7 | M10 | 12 | 100 | | 37 | 200 | 0.05 | X002557 | | 210 | 115 | 182.5 | 173 | 73 | 95 | 203 | 23 | 3.2 | IVIO | 10 | ' | IVITO | 15 | 110 | | 45 | 240 | 0.044 | X002558 | | 240 | 126 | 218 | 215 | 150 | 110 | 240 | 25 | 3.2 | M8 | 8 | 7 | M10 | 23 | 125 | | 55 | 280 | 0.039 | X002559 | | 240 | 120 | 210 | 213 | 150 | 110 | 240 | 25 | 3.2 | IVIO | 0 | 10 | M12 | 23 | 130 | | 75 | 360 | 0.026 | X002560 | | 270 | 162 | 241 | 230 | 150 | 130 | 260 | 40 | 5 | M8 | 16 | 10 | M12 | 32 | 145 | | 90 | 500 | 0.02 | X010145 | 2 | 330 | 162 | 281 | 270 | 150 | 130 | 320 | 40 | 4.5 | M10 | 16 | 10 | M12 | 55 | 200 | | 110 | 500 | 0.02 | X010145 | | 330 | 102 | 201 | 210 | 130 | 130 | 320 | 40 | 4.5 | IVITO | 10 | 10 | IVITZ | J5 | 200 | | Motor | Current | Inductance | | | | | | | | Dimer | nsions | (mm) | | | | | | Weight | Watt Loss | |---------------|---------|------------|-------------|--------|-----|-----|-------|-----|-----|-------|--------|------|-----|-------|------|----|-------|--------|-----------| | Capacity (kW) | (A) | (mH) | Code No. | Figure | Α | В | B1 | С | D | Е | F | Н | | J | K | L | М | (kg) | (W) | | 7.5 | 20 | 1.06 | X002502 | | 160 | 90 | 115 | 130 | 75 | 70 | 160 | 25 | 2.3 | М6 | 10 | 7 | M5 | 5 | 50 | | 11 | 30 | 0.7 | X002503 | | 100 | 105 | 132.5 | 130 | 73 | 85 | 100 | 23 | 2.5 | IVIO | 10 | ' | IVIO | 6 | 65 | | 15 | 40 | 0.53 | X002504 | | | | 140 | | | | | | | | | | | 8 | | | 18.5 | 50 | 0.42 | X002505 | | 180 | 100 | 145 | 150 | 75 | 80 | 180 | 25 | 2.3 | M6 | 10 | 7 | M6 | 0 | 90 | | 22 | 60 | 0.36 | X002506 | | | | 150 | | | | | | | | | | | 8.5 | | | 30 | 80 | 0.26 | X002508 | ١ , | 210 | 100 | 150 | 175 | 75 | 80 | 205 | 25 | 3.2 | M6 | 10 | 7 | M8 | 12 | 95 | | 37 | 90 | 0.24 | X002509 | ' | 210 | 115 | 177.5 | 175 | 75 | 95 | 203 | 25 | 3.2 | IVIO | 10 | 1 | IVIO | 15 | 110 | | 45 | 120 | 0.18 | X002566 | | 240 | 126 | 193 | 205 | 150 | 110 | 240 | 25 | 3.2 | M8 | 8 | 10 | M10 | 23 | 130 | | 55 | 150 | 0.15 | X002567 | | 240 | 120 | 198 | 203 | 130 | 110 | 240 | 23 | 3.2 | IVIO | 0 | 10 | IVITO | 23 | 150 | | 75 | 200 | 0.11 | X002568 | | | | 231 | | | | | | | | | | M10 | | | | 90 | 250 | 0.09 | X002569 | | 270 | 162 | 246 | 230 | 150 | 130 | 260 | 40 | 5 | M8 | 16 | 10 | M12 | 32 | 135 | | 110 | 250 | 0.09 | X002569 | | | | 240 | | | | | | | | | | IVITZ | | | | 132 | 330 | 0.06 | X002570 | | 320 | 165 | 253 | 275 | 150 | 130 | 320 | 40 | 4.5 | M10 | 17.5 | 12 | M12 | 55 | 200 | | 160 | 330 | 0.06 | X002570 | | 320 | 103 | 233 | 213 | 130 | 130 | 320 | 40 | 4.5 | IVITO | 17.5 | 12 | IVITZ | 33 | 200 | | 200 | 490 | 0.04 | X002690 | 2 | | | | | | | | | | | | | | | | | 220 | 490 | 0.04 | X002690 | | 330 | 176 | 293 | 275 | 150 | 150 | 320 | 40 | 4.5 | M10 | 13 | 12 | M12 | 60 | 340 | | 250 | 490 | 0.04 | X002690 | | | | | | | | | | | | | | | | | | 315 | 660 | 0.03 | 300-032-353 | 3 | 330 | 216 | 353 | 285 | 150 | 185 | 320 | 40 | 4.5 | M10 | 22 | 12 | M16 | 80 | 300 | | 355 | 660 | 0.03 | 300-032-353 | ٥ | 550 | 210 | 333 | 200 | 130 | 100 | 320 | 40 | 4.5 | IVITO | 22 | 12 | IVITO | 00 | 300 | ### Terminal Type ### Dimensions (mm) Figure 1 ### 200 V Class | Motor | Current | Inductance | Code No. | Figure | | | | | | Dimer | nsions | (mm) | | | | | | Weight | Watt Loss | |---------------|---------|------------|-------------|--------|-----|-----|-----|-----|----|-------|--------|------|-----|------|------|---|------|--------|-----------| | Capacity (kW) | (A) | (mH) | Code No. | Figure | Α | В | B1 | С | D | Е | F | Н | | J | K | L | М | (kg) | (VV) | | 0.4 | 2.5 | 4.2 | X002553 | | 120 | 71 | | 120 | 40 | 50 | 105 | 20 | 2.3 | | 10.5 | | | 2.5 | 15 | | 0.75 | 5 | 2.1 | X002554 | | 120 | / 1 | | 120 | 40 | 30 | 105 | 20 | 2.3 | | 10.5 | | | 2.5 | 15 | | 1.1 | 10 | 1.1 | X002489 | 1 | | | - | | | | | | | | | 7 | | | 25 | | 1.5 | '0 | 1.1 | A002469 | | 130 | 88 | | 130 | 50 | 70 | 130 | 22 | 3.2 | | 9 | | M4 | 3 | 25 | | 2.2 | 15 | 0.71 | X002490 | | | | | | | | | | | | | | IVI4 | | 30 | | 3 | 20 | 0.53 | 300-027-120 | | | | 140 | | | | | | | M6 | | | | | 35 | | 3.7 | 20 | 0.55 | 300-027-120 | | 135 | 88 | 140 | 130 | 50 | 70 | 130 | 22 | 3.2 | IVIO | 9 | | | 3 | 33 | | 5.5 | 30 | 0.35 | 300-027-121 | | | | 150 | | | | | | | | | | | | 45 | | 7.5 | 40 | 0.265 | 300-027-122 | 2 | 135 | 98 | 160 | 140 | 50 | 80 | 130 | 22 | 3.2 | | 9 | 7 | M5 | 4 | 50 | | 11 | 60 | 0.18 | 300-027-123 | | 165 | 105 | 185 | 170 | 75 | 85 | 160 | 25 | 2.3 | | 10 | | M6 | 6 | 65 | | 15 | 80 | 0.13 | 300-027-124 | | 185 | 100 | 180 | 195 | 75 | 80 | 180 | 25 | 2.3 | | 10 | | M6 | 8 | 75 | | 18.5 | 90 | 0.12 | 300-027-125 | | 100 | 100 | 100 | 195 | 15 | 00 | 100 | 25 | 2.3 | | 10 | | IVIO | 0 | 90 | | Motor | Current | Inductance | Code No | Figure | | | | | | Dime | nsions | (mm) | | | | | | Weight | Watt Loss | |---------------|---------|------------|-------------|--------|-----|-----|-----|-----|------|------|--------|------|-----|----|------|----------|------|--------|-----------| | Capacity (kW) | (A) | (mH) | Code No. | Figure | Α | В | B1 | С | D | Е | F | Н | | J | K | L | М | (kg) | (W) | | 0.4 | 1.3 | 18 | X002561 | | 120 | 71 | | 120 | 40 | 50 | 105 | 20 | 2.3 | | 10.5 | | | 2.5 | 15 | | 0.75 | 2.5 | 8.4 | X002562 | | 120 | / 1 | | 120 | 40 | 30 | 105 | 20 | 2.3 | | 10.5 | | | 2.5 | 15 | | 1.5 | 5 | 4.2 | X002563 | | | | | | | | | | | | | | | | 25 | | 2.2 | 7.5 | 3.6 | X002564 | 1 | | 88 | - | | | 70 | | | | | | 7 | M4 | 3 | 25 | | 3 | 10 | 2.2 | X002500 | | 130 | 00 | | 130 | 50 | / 0 | 130 | 22 | 3.2 | | 9 | | | 3 | 40 | | 3.7 | 10 | 2.2 | A002300 | | | | | | | | | | | M6 | | | | | 40 | | 5.5 | 15 | 1.42 | X002501 | | | 98 | | | | 80 | | | | | | | | 4 | 50 | | 7.5 | 20 | 1.06 | 300-027-126 | | 165 | 90 | 160 | 155 | | 70 | 160 | | | | | | M4 | 5 | 50 | | 11 | 30 | 0.7 | 300-027-127 | 2 | 100 | 105 | 175 | 155 | 75 | 85 | 160 | 25 | 2.3 | | 10 | 7 | IVI4 | 6 | 65 | | 15 | 40 | 0.53 | 300-027-128 | | 185 | 100 | 170 | 185 | 1 13 | 80 | 180 | 25 | 2.3 | | 10 | <i>'</i> | M5 | 8 | 90 | | 18.5 | 50 | 0.42 | 300-027-129 | | 100 | 100 | 170 | 100 | | 00 | 100 | | | | | | UNIO | 0 | 90 | ### DC Reactor (UZDA-B for DC circuit) Base device selection on motor capacity. ### Terminal Type ### Dimensions (mm) Figure 2 ### 200 V Class | Motor
Capacity | Current
(A) | Inductance
(mH) | Code No. | Figure | | | | | | nsions
m) | | | | | Weight | Watt
Loss | |-------------------|----------------|--------------------|-------------|--------|-----|-------|------|-----|----|--------------|----|----|----------|------|--------|--------------| | (kW) | | | | | Х | Y2 | Y1 | Z | В | Н | K | G | ϕ 1 | φ2 | (kg) | (VV) | | 0.4 | 5.4 | 8 | 300-027-130 | 1 | 85 | _ | _ | 81 | 74 | _ | _ | 32 | M4 | M4 | 0.8 | 8 | | 0.75 | 5.4 | 0 | 300-027-130 | ' | 05 | | | 01 | 74 | | | 52 | IVI | 1014 | 0.0 | 0 | | 1.1 | | | | | | | | | | | | | | | | | | 1.5 | | | | | | | | | | | | | | | | | | 2.2 | 18 | 3 | 300-027-131 | | 86 | 84 | 36 | 101 | 60 | 55 | 18 | _ | M4 | M4 | 2 | 18 | | 3 | | | | | | | | | | | | | | | | | | 3.7 | | | | 2 | | | | | | | | | | | | | | 5.5 | 36 | 1 | 300-027-132 | _ | 105 | 94 | 46 | 129 | 64 | 80 | 26 | _ | M6 | M4 | 3.2 | 22 | | 7.5 | 30 | ! | 300-027-132 | | 103 | 34 | 40 | 129 | 04 | 00 | 20 | | IVIO | 1014 | 3.2 | 22 | | 11 | 72 | 0.5 | 200 027 122 | | 105 | 124 | 56 | 135 | 64 | 100 | 26 | _ | M6 | M6 | 4.9 | 29 | | 15 | 12 | 0.5 | 300-027-133 | | 105 | 124 | 56 | 133 | 04 | 100 | | | IVIO | IVIO | 4.9 | 29 | | 18.5 | 90 | 0.4 | 300-027-139 | | 133 | 147.5 | 52.5 | 160 | 86 | 80 | 25 | _ | M6 | M6 | 6.5 | 44 | | 22 to 110 | Built-in | | | | | | | | | | | | | | | | | Motor
Capacity | Current
(A) |
Inductance
(mH) | Code No. | Dimensions (mm) | | | | | | | | | | | Weight | Watt
Loss | |-------------------|----------------|--------------------|-------------|-----------------|-----|-------|------|-----|----|----|----|----|------------|----|--------|--------------| | (kW) | | | | | Χ | Y2 | Y1 | Z | В | Н | K | G | φ 1 | φ2 | (kg) | (VV) | | 0.4
0.75 | 3.2 | 28 | 300-027-134 | 4 | 85 | _ | - | 81 | 74 | - | - | 32 | M4 | M4 | 0.8 | 9 | | 1.5
2.2 | 5.7 | 11 | 300-027-135 | ' | 90 | _ | _ | 88 | 80 | - | _ | 32 | M4 | M4 | 1 | 11 | | 3.7 | 12 | 6.3 | 300-027-136 | | 86 | 84 | 36 | 101 | 60 | 55 | 18 | _ | M4 | M4 | 2 | 16 | | 5.5
7.5 | 23 | 3.6 | 300-027-137 | 2 | 105 | 104 | 46 | 118 | 64 | 80 | 26 | _ | M6 | M4 | 3.2 | 27 | | 11
15 | 33 | 1.9 | 300-027-138 | 2 | 105 | 109 | 51 | 129 | 64 | 90 | 26 | _ | M6 | M4 | 4 | 26 | | 18.5 | 47 | 1.3 | 300-027-140 | | 115 | 142.5 | 57.5 | 136 | 72 | 90 | 25 | - | M6 | M5 | 6 | 42 | | 22 to 355 | Built-in | | | | | | | | | | | | | | | | ### Zero Phase Reactor Zero-phase reactor should match wire gauge.* * Current values for wire gauges may vary based on electrical codes. The table below lists selections based on Japanese electrical standards and Yaskawa's ND rating. Contact Yaskawa for questions regarding UL. Pass each wire (U/T1, V/T2, W/T3) through the core 4 times. Noise will be more effectively reduced when more wire is wrapped. ### If the wire is thick and cannot be wrapped around the core, pass it through in series of no less than 4 cores. ### [Hitachi Metals, Ltd.] FINEMET Zero-Phase Reactor to Reduce Radio Noise Note: FINEMET is a registered trademark of Hitachi Metals, Ltd. ### Connection Diagram Compatible with the input and output side of the drive. All wires (U/T1, V/T2, W/T3) should pass through the four cores of the reactor in series without winding. Separate each terminal lead for U/T1, V/T2, and W/T3 in half, passing one half of the wires through a set of four cores and the other half through the other set of four cores as shown. Diagram c ### Diagram a Diagram b ### Dimensions (mm) Model F6045GB Model F11080GB ### 200 V Class | | GA70 | 0 (ND) | | | Zε | ro Phas | e Reactor | | | | |-------------------|---------------|-------------------|-----------|-------------|------|---------|-----------|-------------|------|---------| | Motor
Capacity | | mended
e (mm²) | | Input Side | | | | Output Side | е | | | (kW) | Input
Side | Output
Side | Model | Code No. | Qty. | Diagram | Model | Code No. | Qty. | Diagram | | 0.4 | | | | | | | | | | | | 0.75 |] | | | | | | | | | | | 1.1 | 2 | 2 | F6045GB | FIL001098 | 1 | а | F6045GB | FIL001098 | 1 | а | | 1.5 | | | | | | | | | | | | 2.2 | | | | | | | | | | | | 3 | 3.5 | 2 | F6045GB | FIL001098 | 1 | a | F6045GB | FIL001098 | 1 | a | | 3.7 | 3.5 | 3.5 | | | | - | | | | | | 5.5 | 8 | 3.5 | F11080GB | FIL001097 | 1 | а | F6045GB | FIL001098 | 1 | а | | 7.5 | 14 | 8 | F6045GB | FIL001098 | 4 | b | F11080GB | FIL001097 | 1 | а | | 11 | 14 | 14 | | | | | | | | | | 15 | 22 | 14 | F6045GB | FIL001098 | 4 | b | F6045GB | FIL001098 | 4 | b | | 18.5 | 38 | 22 | | | | | | | | | | 22 | 50 | 30 | F11080GB | FIL001097 | 4 | b | F6045GB | FIL001098 | 4 | b | | 30 | 38 | 38 | F6045GB | FIL001098 | 4 | b | F6045GB | FIL001098 | 4 | b | | 37 | 60 | 60 | | | | | | | | | | 45 | 80 | 80 | F11080GB | FIL001097 | 4 | b | F11080GB | FIL001097 | 4 | b | | 55 | 100 | 125 | | | | | | | | | | 75 | 60×2P | 50×2P | F200160PB | 300-001-041 | 4 | b | F11080GB | FIL001097 | 4 | b | | 90 | 80×2P | 80×2P | F200160PB | 300-001-041 | 4 | b | F200160PB | 300-001-041 | 4 | b | | 110 | 125×2P | 125×2P | 120010078 | 300-001-041 | 4 | L D | 120010078 | 300-001-041 | 4 | u | Depending on the loading conditions of the motor, when a wire is selected that is not of the recommended gauge, select a zero-phase reactor using the table below. | Wiring Gauge Guide mm ² | Model | Code No. | Qty. | Diagram | |---|-----------|-------------|------|---------| | 2 to 5.5 or less | F6045GB | FIL001098 | 1 | | | More than 5.5 to 8 | F11080GB | FIL001097 | 1 | a | | More than 8 to 38 | F6045GB | FIL001098 | 4* | | | More than 38 to 200, more than 38×2P to 50×2P | F11080GB | FIL001097 | 4* | b | | More than 200 to 250, more than $50\times2P$ to $150\times4P$ | F200160PB | 300-001-041 | 4* | | | More than 150×4P to 150×8P | F200160PB | 300-001-041 | 8* | С | ### 400 V Class | | GA70 | 0 (ND) | | | Zε | ero Phas | se Reactor | | | | |-------------------|--------------------|-----------------|----------------|--------------------|------|-----------|-------------|-------------|------|---------| | Motor
Capacity | Recomi
Gauge | mended
(mm²) | | Input Side | | | | Output Side | Э | | | (kW) | Input
Side | Output
Side | Model | Code No. | Qty. | Diagram | Model | Code No. | Qty. | Diagram | | 0.4 | | | | | | | | | | | | 0.75 | | | | | | | | | | | | 1.5 | | | | | | | | | | | | 2.2 | 2 | 2 | F6045GB | FIL001098 | 1 | а | F6045GB | FIL001098 | 1 | а | | 3 | | | | | | | | | | | | 3.7 | 1 | | | | | | | | | | | 5.5 | | | | | | | | | | | | 7.5 | 3.5 | 3.5 | F6045GB | FIL001098 | 1 | а | F6045GB | FIL001098 | 1 | а | | 11 | 8 | 5.5 | F11080GB | FIL001097 | 1 | а | F6045GB | FIL001098 | 1 | а | | 15 | 14 | 8 | F6045GB | FIL001098 | 4 | b | F11080GB | FIL001097 | 1 | а | | 18.5 | | | | | | | | | | | | 22 | 14 | 14 | F6045GB | FIL001098 | 4 | b | F6045GB | FIL001098 | 4 | b | | 30 | 1 | | | | | | | | | | | 37 | 22 | 22 | | | | | | | | | | 45 | 30 | 30 | F6045GB | FIL001098 | 4 | b | F6045GB | FIL001098 | 4 | b | | 55 | 38 | 38 | | | | | | | | | | 75 | 60 | 60 | F11080GB | FIL001097 | 4 | b | F11080GB | FIL001097 | 4 | b | | 90 | 80 | 80 | FIIU8UGB | FILUU1097 | 4 | D D | FIIU8UGB | FILUU1097 | 4 | D | | 110 | 50×2P | 50×2P | F11080GB | FIL001097 | 4 | b | F11080GB | FIL001097 | 4 | b | | 132 | 30 × 2P | 30 × 2P | FIIU0UGB | FILUUIU9/ | 4 | Ь . | FIIUOUGB | FILUUIU9/ | 4 | D | | 160 | 80×2P | 80×2P | F200160PB | 300-001-041 | 4 | b | F200160PB | 300-001-041 | 4 | b | | 200 | 125× | 125× | | 300-001-041 | 4 | L | F200160PB | 300-001-041 | 4 | L | | 220 | 2P | 2P | F200160PB | 300-001-041 | 4 | b | LZ00100BB | 300-001-041 | 4 | b | | 250 | 405 | 400 | | | | | | | | | | 315 | 125× 100×
4P 4P | F200160PB | PB 300-001-041 | 4 | b | F200160PB | 300-001-041 | 4 | b | | | 355 | 125× | | | 31 5 300 001 041 | | | | | | | ^{*} The selection of 4 or more zero-phase reactors assumes that the wires are thick and cannot be wrapped When the wires can be wrapped, you can reduce the number of reactors used ### Fuse and Fuse Holder Install a fuse to the drive input terminals to prevent damage in case a fault occurs. Refer to the instruction manual for information on UL-approved components. [BUSSMANN] Connection Diagram This example shows a DC power supply (two drives connected in series). For an AC power supply, see the connection diagram on page 24. Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced. | | | AC Power Supply | Input | | | | DC Power Supply | Input | | | |--------------|--------------|---|-------|------------|------|-------------|---|-------|------------|----------| | Catalog Code | | Fuse | | Fuse Hold | der | | Fuse | | Fuse Hold | der | | GA70A | Model | Rated Shortcircuit
Breaking Current (kA) | Qty. | Model | Qty. | Model | Rated Shortcircuit
Breaking Current (kA) | Qty. | Model | Qty. | | 2004 | | | | | | | | | | | | 2006 | FWH-45B | 200 | 3 | 1BS101 | 6 | FWH-45B | 200 | 2 | 1BS101 | 4 | | 2008 | FWH-45B | 200 | 3 | 185101 | 0 | FWH-45B | 200 | 2 | 185101 | 4 | | 2010 | | | | | | | | | | | | 2012 | FWH-50B | 200 | 3 | 1BS101 | 6 | FWH-50B | 200 | 2 | 1BS101 | 4 | | 2018
2021 | FWH-80B | 200 | 3 | 1BS101 | 6 | FWH-80B | 200 | 2 | 1BS101 | 4 | | 2030 | FWH-125B | | | | | FWH-125B | | | | _ | | 2042 | FWH-150B | | | | | FWH-150B | | | | | | 2056 | FWH-200B | 200 | 3 | 1BS102 | 6 | FWH-200B | 200 | 2 | 1BS102 | 4 | | 2070 | FWH-225A | | | | | FWH-250A | | | | | | | FWH-225A | | | 150100 | | FWH-250A | | | 150100 | <u> </u> | | 2082 | FWH-250A*1 | 200 | 3 | 1BS102 | 6 | FWH-300A*1 | 200 | 2 | 1BS102 | 4 | | 0440 | FWH-225A | 202 | | 100100 | | FWH-250A | 200 | | 150100 | | | 2110 | FWH-250A*1 | 200 | 3 | 1BS102 | 6 | FWH-275A*1 | 200 | 2 | 1BS102 | 4 | | 0400 | FWH-275A | 000 | | 100100 | | FWH-300A | 000 | | 100100 | | | 2138 | FWH-300A*1 | 200 | 3 | 1BS102 | 6 | FWH-350A*1 | 200 | 2 | 1BS102 | 4 | | 2169 | FWH-275A | 200 | 3 | 1BS102 | 6 | FWH-350A | 200 | 2 | 1BS103 | 4 | | 2109 | FWH-350A*1 | 200 | 3 | 185102 | 0 | FWH-450A*1 | 200 | 2 | 185103 | 4 | | 2211 | FWH-325A | 200 | 3 | 1BS102 | 6 | FWH-450A | 200 | 2 | 1BS103 | 4 | | 2211 | FWH-450A*1 | 200 | 3 | 1BS103 | 6 | FWH-600A*1 | 200 | | 165103 | 4 | | 2257 | FWH-600A | 200 | 3 | 1BS103 | 6 | FWH-600A | 200 | 2 | 1BS103 | 4 | | 2231 | I WH-000A | 200 | J 3 | 153103 | 0 | FWH-700A*1 | 200 | | *2 | | | 2313 | FWH-800A | 200 | 3 | * 2 | | FWH-800A | 200 | 2 | * 2 | | | 2010 | I WITEGOOK | 200 | | 7.2 | | FWH-1000A*1 | 200 | | ** | | | 2360 | FWH-1000A | 200 | 3 | *2 | | FWH-1000A | 200 | 2 | *2 | | | 2415 | · •••• 1000A | 200 | | -,,*2 | | 1 7711 1000 | 200 | | -1*2 | | ^{*1:} Yaskawa suggests that you select a lower tier fuse for applications in which a high current that is 150% or more of the drive rated current repeatedly flows, such as cranes (hoists), elevators, punching presses, and washing machines. ^{*2:} Manufacturer does not recommend a specific fuse holder for this fuse. | | | AC Power Supply | / Input | | | | DC Power Supply | / Input | | | |--------------|--------------|---|---------|-----------|-----------|-------------|---|---------
------------|------| | Catalog Code | | Fuse | | Fuse Hold | der | | Fuse | | Fuse Hold | der | | GA70A | Model | Rated Shortcircuit
Breaking Current (kA) | Qty. | Model | Qty. | Model | Rated Shortcircuit
Breaking Current (kA) | Qty. | Model | Qty. | | 4002 | FWH-50B | 200 | 3 | 1BS101 | 6 | FWH-50B | 200 | 2 | 1BS101 | 4 | | 4004 | FWH-50B | 200 | 3 | 1BS101 | 6 | FWH-50B | 200 | 2 | 1BS101 | 4 | | 4005 | LANU-20P | 200 | 3 | 100101 | 0 | FWH-50B | 200 | | 100101 | 4 | | 4007 | | | | | | | | | | | | 4009 | FWH-60B | 200 | 3 | 1BS101 | 6 | FWH-60B | 200 | 2 | 1BS101 | 4 | | 4012 | | | | | | | | | | | | 4018 | FWH-80B | 200 | 3 | 1BS101 | 6 | FWH-80B | 200 | 2 | 1BS101 | 4 | | 4023 | FWH-90B | 200 | 3 | 1BS101 | 6 | FWH-90B | 200 | 2 | 1BS101 | 4 | | 4031 | FWH-150B | 200 | 3 | 1BS102 | 6 | FWH-150B | 200 | 2 | 1BS102 | 4 | | 4038 | FWH-200B | 200 | 3 | 1BS102 | 6 | FWH-200B | 200 | 2 | 1BS102 | 4 | | 4044 | FWH-200B | 200 | 3 | 185102 | 0 | FWH-200B | 200 | 2 | 185102 | 4 | | 4060 | FWH-225A | 200 | 3 | 1BS102 | 6 | FWH-225A | 200 | 2 | 1BS102 | 4 | | 4075 | FWH-250A | 200 | 3 | 1BS102 | 6 | FWH-250A | 200 | 2 | 1BS102 | 4 | | 4089 | FWH-275A | 200 | 3 | 1BS102 | 6 | FWH-275A | 200 | 2 | 1BS102 | 4 | | 4103 | FWH-2/5A | 200 | 3 | 185102 | 0 | FWH-275A | 200 | 2 | 185102 | 4 | | 4440 | E14/11 000 A | 000 | | 100100 | 6 | FWH-300A | 200 | _ | 100100 | 4 | | 4140 | FWH-300A | 200 | 3 | 1BS102 | 6 | FWH-325A*1 | 200 | 2 | 1BS102 | 4 | | 4168 | FWH-325A | 200 | 3 | 100100 | 6 | FWH-400A | 200 | 2 | 100100 | 4 | | 4100 | FWH-400A*1 | 200 | 3 | 1BS102 | 0 | FWH-450A*1 | 200 | 2 | 1BS103 | 4 | | 4208 | FWH-500A | 200 | 3 | 1BS103 | 6 | FWH-500A | 200 | 2 | 1BS103 | 4 | | 4200 | FWH-500A | 200 | 3 | 165105 | 6 | FWH-600A*1 | 200 | ~ | 100100 | 4 | | 4250 | EMIL COOA | 200 | 3 | 1BS103 | _ | FWH-600A | 200 | 2 | 1BS103 | 4 | | 4250 | FWH-600A | 200 | 3 | 185103 | 6 | FWH-700A*1 | 200 | 2 | * 2 | | | 4296 | FWH-700A | 200 | 3 | 1BS103 | 6 | FWH-700A | 200 | 2 | * 2 | | | 4290 | FWH-700A | 200 | 3 | *2 | | FWH-800A*1 | 200 | 2 | *2 | | | 4371 | FWH-800A | 200 | 3 | *2 | | FWH-800A | 200 | 2 | *2 | | | 4371 | FWH-800A | 200 | 3 | *2 | | FWH-1000A*1 | 200 | 2 | *2 | | | 4389 | ENAUL 1000A | 200 | 3 | *2 | | FWH-1000A | 200 | 2 | *2 | | | 4369 | FWH-1000A | 200 | 3 | *2 | | FWH-1200A*1 | 200 | 2 | *2 | | | 4450 | ENAUL 1000A | 000 | _ | **0 | | FWH-1200A | 000 | 2 | ale O | | | 4453 | FWH-1200A | 200 | 3 | *2 | | FWH-1400A*1 | 200 | | * 2 | | | 4568 | FWH-1200A | 200 | 3 | *2 | | FWH-1200A | 200 | 2 | *2 | | | 4000 | FWH-1200A | 200 | 3 | *2 | | FWH-1600A*1 | 200 | 4 | *2 | | | 4675 | FWH-1400A | 200 | 2 | *0 | | EWH 16004 | 200 | 2 | *2 | | | 4075 | FWH-1600A*1 | ─ 200 3 | 3 *2 | | FWH-1600A | 00A 200 | | *2 | | | ^{*1:} Yaskawa suggests that you select a lower tier fuse for applications in which a high current that is 150% or more of the drive rated current repeatedly flows, such as cranes (hoists), elevators, punching presses, and washing machines. *2: Manufacturer does not recommend a specific fuse holder for this fuse. ### Input Noise Filter Base device selection on motor capacity. Noise Filter without Case Noise Filter with Case ### Connection Diagram Note: Do not connect the input noise filter to the drive output terminals (U, V, W). Connect in parallel when using two filters. Connecting Noise Filters in Parallel to the Input or Output Side (examples shows two filters in parallel) Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals. Noise filters and grounding wire should be as heavy and as short as possible. ### 200 V Class | Motor | Nois | se Filter witho | ut Cas | е | No | ise Filter with | Case | | Noise Filt | er by Schaffn | er EM0 | CK.K. | |---------------------------|-------------|-----------------|--------|----------------------|-------------|-----------------|------|----------------------|--------------------------------|------------------------|-----------|----------------------| | Capacity (kW) | Model | Code No. | Qty. | Rated
Current (A) | Model | Code No. | Qty. | Rated
Current (A) | Model | Code No. | Qty. | Rated
Current (A) | | 0.4
0.75
1.1
1.5 | LNFD-2103DY | FIL000132 | 1 | 10 | LNFD-2103HY | FIL000140 | 1 | 10 | _ | _ | 1 | - | | 2.2 | LNFD-2153DY | FIL000133 | 1 | 15 | LNFD-2153HY | FIL000141 | 1 | 15 | _ | _ | ı | _ | | 3.7 | LNFD-2303DY | FIL000135 | 1 | 30 | LNFD-2303HY | FIL000143 | 1 | 30 | _ | _ | - | - | | 5.5 | LNFD-2203DY | FIL000134 | 2 | 40 | LNFD-2203HY | FIL000142 | 2 | 40 | FN258L-42-07 | FIL001065 | 1 | 42 | | 7.5 | | | 2 | 60 | | | 2 | 60 | FN258L-55-07 | FIL001066 | 1 | 55 | | 11
15 | LNFD-2303DY | FIL000135 | 3 | 90 | LNFD-2303HY | FIL000143 | 3 | 90 | FN258L-75-34 | FIL001067 | 1 | 75 | | 18.5
22 | | | 4 | 120 | | | 4 | 120 | FN258L-100-35
FN258L-130-35 | FIL001068
FIL001069 | 1 | 100 | | 30 | | | | | | | | | FN258L-130-35 | FIL001069 | 1 | 130 | | 37
45 | | | | | | | | | FN258L-180-07 | FIL001070 | 1 | 180 | | 55 | _ | _ | - | _ | _ | _ | - | _ | FN359P-250-99 | FIL001071 | 1 | 250 | | 75 | | | | | | | | | FN359P-400-99 | FIL001073 | 1 | 400 | | 90 | | | | | | | | | | FN359P-500-99 | FIL001074 | 1 | | 110 | | | | | | | | | FN359P-600-99 | FIL001075 | 1 | 600 | | Motor | Nois | e Filter witho | ut Cas | е | No | ise Filter with | Case | | Noise Filt | er by Schaffn | er EM0 | C K.K. | |---------------|-------------|----------------|--------|----------------------|-------------|-----------------|------|----------------------|---------------|---------------|--------|----------------------| | Capacity (kW) | Model | Code No. | Qty. | Rated
Current (A) | Model | Code No. | Qty. | Rated
Current (A) | Model | Code No. | Qty. | Rated
Current (A) | | 0.4 | LNFD-4053DY | FIL000144 | 1 | 5 | LNFD-4053HY | FIL000149 | 1 | 5 | | | | | | 1.5
2.2 | LNFD-4103DY | FIL000145 | 1 | 10 | LNFD-4103HY | FIL000150 | 1 | 10 | _ | _ | _ | _ | | 3.7 | LNFD-4153DY | FIL000146 | 1 | 15 | LNFD-4153HY | FIL000151 | 1 | 15 | _ | | _ | | | 5.5 | LNFD-4203DY | FIL000147 | 1 | 20 | LNFD-4203HY | FIL000152 | 1 | 20 | | | | | | 7.5 | LNFD-4303DY | FIL000148 | 1 | 30 | LNFD-4303HY | FIL000153 | 1 | 30 | | | | | | 11 | LNFD-4203DY | FIL000147 | 2 | 40 | LNFD-4203HY | FIL000152 | 2 | 40 | FN258L-42-07 | FIL001065 | 1 | 42 | | 15
18.5 | | | 2 | 60 | | | 2 | 60 | FN258L-55-07 | FIL001066 | 1 | 55 | | 30 | LNFD-4303DY | FIL000148 | 3 | 90 | LNFD-4303HY | FIL000153 | 3 | 90 | FN258L-75-34 | FIL001067 | 1 | 75 | | 37 | | | | | | | | | FN258L-100-35 | FIL001068 | 1 | 100 | | 45 | | | 4 | 120 | | | 4 | 120 | FN258L-100-35 | FIL001068 | 1 | 100 | | 55 | | | | | | | | | FN258L-130-35 | FIL001069 | 1 | 130 | | 75
90 | | | | | | | | | FN258L-180-07 | FIL001070 | 1 | 180 | | 110 | _ | _ | _ | _ | _ | _ | _ | _ | FN359P-300-99 | FIL001072 | 1 | 300 | | 132
160 | | | | | | | | | FN359P-400-99 | FIL001073 | 1 | 400 | | 200 | | | | | | | | | FN359P-500-99 | FIL001074 | 1 | 500 | | 220
250 | | | | | | | | | FN359P-600-99 | FIL001075 | 1 | 600 | | 315
355 | _ | _ | _ | _ | _ | _ | _ | _ | FN359P-900-99 | FIL001076 | 1 | 900 | ### Without Case ### Dimensions (mm) Terminal Model Dimensions (mm) Mounting Weight Code No. **Figure** (mm) LNFD-Screw (kg) 2103DY FIL000132 120 80 55 108 68 20 9 M4×4, 20 mm 11 0.2 2153DY FIL000133 2203DY FIL000134 90 158 78 9 11 M4 \times 4, 20 mm 0.4 70 170 20 2303DY FIL000135 2 110 79 98 10 13 M4×6, 20 mm 0.5 4053DY FIL000144 2 75 0.3 4103DY FIL000145 2 170 130 79 118 30 9 11 M4×6, 30 mm 95 0.4 4153DY FIL000146 2 4203DY FIL000147 0.5 200 145 100 94 133 30 M4×4, 30 mm 4303DY FIL000148 10 13 0.6 Figure 1 Figure 2 ### With Case ### Dimensions (mm) Model 4303HY (mm) Code No LNFD-(kg) 2103HY FIL000140 155 33 9 185 95 85 65 11 0.9 2153HY FIL000141 2203HY FIL000142 9 11 1.5 125 100 210 95 240 33 2303HY FIL000143 10 13 1.6 4053HY FIL000149 1.6 4103HY FIL000150 140 120 205 43 9 235 110 11 1.7 4153HY FIL000151 4203HY FIL000152 9 11 155 125 240 125 43 2.2 Dimensions (mm) ### Manufactured by Schaffner EMC K.K. ### Dimensions (mm) FIL000153 | | Model | Weight
(kg) | |---|---------------|----------------| | ı | FN359P-250-99 | 16 | | ı | FN359P-300-99 | 16 | | ı | FN359P-400-99 | 18.5 | | ı | FN359P-500-99 | 19.5 | | ı | FN359P-600-99 | 20.5 | Terminal 10 13 Weight Figure 1 Figure 2 | Madal | Гівшина | | | | | Din | nensions (r | nm) | | | | | Wire Gauge | Weight | |---------------|---------|---------|-------|--------|---------|-----|-------------|-----|-----|-----|----|-----|------------|--------| | Model | Figure | Α | В | С | D | Е | F | G | Н | J | L | 0 | Р | (kg) | | FN258L-42-07 | | | 185±1 | 70 | | | 45 | | 500 | | 12 | | AWG8 | 2.8 | | FN258L-55-07 | 1 | 329 | 165±1 | 80 | 300 | 314 | 55 | 6.5 | 500 | 1.5 | 12 | M6 | AWG6 | 3.1 | | FN258L-75-34 | | | 220 | 00 | | | 33 | | _ | | _ | | - | 4 | | FN258L-100-35 | 2 | 379±1.5 | 220 | 90±0.8 | 350±1.2 | 364 | 65 | 6.5 | - | 1.5 | _ | M10 | - | 5.5 | Note: For CE Marking (EMC Directive) compliant models, contact us for inquiry. ### Output Noise Filter Base device selection on motor capacity. [NEC Tokin Corporation] #### Connection Diagram Output noise filter Drive ELCB or MCCB IN I R/L1 U/T1 S/L2 V/T2d М T/L3 W/T3 Use the mounting screw as the grounding terminal. #### 200 V Class | 200 V CI | 433 | | | | | | | | | | | | | | |----------|-------------|-----------|--------|---------|-----|-----|-----|-----|---------|-----|---------------------|--------------|---------------|----------| | Motor | | | a | Rated | | | | | ensions | | | | | | | Capacity | Model | Code No. | Qty.*1 | Current | | | | | mm) | | | | Terminal | Weight*2 | | (kW) | | | | (A) | Α | В | С | D | Е | F | G | Н | | (kg) | | 0.4 | | | | | | | | | | | | | | | | 0.75 | LF-310KA | FIL000068 | 1 | 10 | 140 | 100 | 100 | 90 | 70 | 45 | 7× \(\phi 4.5 | φ4.5 | TE-K5.5 M4 | 0.5 | | 1.1 | | 200000 | | | | | | | | | 1 / 4 1.0 | γ 1.0
 12 11010 1111 | 0.0 | | 1.5 | | | | | | | | | | | | | | | | 2.2 | | | | | | | | | | | | | | | | 3 | LF-320KA | FIL000069 | 1 | 20 | 140 | 100 | 100 | 90 | 70 | 45 | $7 \times \phi 4.5$ | φ4.5 | TE-K5.5 M4 | 0.6 | | 3.7 | | | | | | | | | | | | | | | | 5.5 | | | 1 | 50 | | | | | | | | | | | | 7.5 | | | ' | - 50 | | | | | | | | | | | | 11 | LF-350KA | FIL000070 | | | 260 | 180 | 180 | 160 | 120 | 65 | $7 \times \phi 4.5$ | φ4.5 | TE-K22 M6 | 2.0 | | 15 | | | 2 | 100 | | | | | | | | | | | | 18.5 | | | | | | | | | | | | | | | | 22 | LF-350KA*3 | FIL000070 | 3 | 150 | 260 | 180 | 180 | 160 | 120 | 65 | $7 \times \phi 4.5$ | φ4.5 | TE-K22 M6 | 2.0 | | 22 | LF-3110KB*3 | FIL000076 | 1 | 110 | 540 | 340 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | <i>φ</i> 6.5 | TE-K60 M8 | 19.5 | | 30 | LF-350KA*3 | FIL000070 | 3 | 150 | 260 | 180 | 180 | 160 | 120 | 65 | $7 \times \phi 4.5$ | φ4.5 | TE-K22 M6 | 2.0 | | 30 | LF-375KB*3 | FIL000075 | 2 | 150 | 540 | 320 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | <i>φ</i> 6.5 | TE-K22 M6 | 12.0 | | 37 | | | | | | | | | | | | | | | | 45 | LF-3110KB | FIL000076 | 2 | 220 | 540 | 320 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | φ6.5 | TE-K60 M8 | 19.5 | | 55 | | | | | | | | | | | | | | | | 75 | | | 3 | 330 | | | | | | | | | | | | 90 | LF-3110KB | FIL000076 | 4 | 440 | 540 | 320 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | φ6.5 | TE-K60 M8 | 19.5 | | 110 | | | 5 | 550 | | | | | | | , | ' | | | *1 : Connect in parallel when using more than one filter. Refer to the Connecting Noise Filters in Parallel to the Input or Output Side on page 48. | Motor | Marilal | Osala Na | Ob. *1 | Rated | | Dimensions
(mm) | | | | | | | | 144-1-1-1-1-1-20 | |------------------|------------|---|--------|----------------|-----|--------------------|-----|---------|----------|-----|---------------------|--------------|--------------|------------------| | Capacity
(kW) | Model | Code No. | Qty.*1 | Current
(A) | Α | В | С | (r
D | nm)
E | F | G | Н | Terminal | Weight*2
(kg) | | 0.4 | | | | (A) | A | Б | C | D | E | Г | G | П | | (kg) | | 0.75 | | | | | | | | | | | | | | | | 1.5 | | | | | | | | | | | | | | | | 2.2 | LF-310KB | FIL000071 | 1 | 10 | 140 | 100 | 100 | 90 | 70 | 45 | $7 \times \phi 4.5$ | <i>φ</i> 4.5 | TE-K5.5 M4 | 0.5 | | 3 | | | | | | | | | | | | | | | | 3.7 | | | | | | | | | | | | | | | | 5.5 | . = 0001/5 | ======================================= | | | | | | | | | | | | | | 7.5 | LF-320KB | FIL000072 | | 20 | 140 | 100 | 100 | 00 | 70 | 4.5 | 7 | 445 | TE 1/5 5 144 | 0.6 | | 11 | LF-335KB | FIL000073 | 1 | 35 | 140 | 100 | 100 | 90 | 70 | 45 | 7× <i>ϕ</i> 4.5 | <i>φ</i> 4.5 | TE-K5.5 M4 | 0.8 | | 15 | LF-333NB | FILUUUU/3 | | 35 | | | | | | | | | | 0.0 | | 18.5 | LF-345KB | FIL000074 | 1 | 45 | 260 | 180 | 180 | 160 | 120 | 65 | 7× <i>φ</i> 4.5 | φ4.5 | TE-K22 M6 | 2.0 | | 22 | LF-375KB | FIL000075 | 1 | 75 | 540 | 320 | 480 | 300 | 340 | 240 | 9× φ6.5 | <i>φ</i> 6.5 | TE-K22 M6 | 12.0 | | 30 | LI STORE | 112000073 | ' | - 75 | 340 | 320 | 400 | 300 | 340 | 240 | 3Α ψ0.5 | φ0.5 | TE REE IVIO | 12.0 | | 37 | LF-3110KB | FIL000076 | 1 | 110 | 540 | 340 | 480 | 300 | 340 | 240 | 9× φ6.5 | <i>φ</i> 6.5 | TE-K60 M8 | 19.5 | | 45 | | | | | | | | | | | , | <u> </u> | | | | 55 | LF-375KB | FIL000075 | 2 | 150 | 540 | 320 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | φ6.5 | TE-K22 M6 | 12.0 | | 75 | | | 2 | 220 | | | | | | | | | | | | 90 | | | | | | | | | | | | | | | | 110 | | | 3 | 330 | | | | | | | | | | | | 132
160 | | | | | | | | | | | | | | | | 200 | LF-3110KB | FIL000076 | 4 | 440 | 540 | 320 | 480 | 300 | 340 | 240 | 9× <i>ϕ</i> 6.5 | φ6.5 | TE-K60 M8 | 19.5 | | 220 | | | 5 | 550 | | | | | | | | | | | | 250 | | | 6 | 660 | | | | | | | | | | | | 315 | | | 7 | 770 | | | | | | | | | | | | 355 | | | 8 | 880 | | | | | | | | | | | ^{*1:} Connect in parallel when using more than one filter. Refer to the Connecting Noise Filters in Parallel to the Input or Output Side on page 48. ^{★2:} Weight of one filter. ^{*3:} Either noise filter model can be used. ^{*2:} Weight of one filter. ### Momentary Power Loss Recovery Unit # Dimensions (mm) | Model | Code No. | |--------------------|----------| | 200 V Class: P0010 | P0010 | | 400 V Class: P0020 | P0020 | Note: Functions as a back-up power supply for drives up to 11 kW. Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s. Results may vary with drive capacity. ### Capacitor-Type Noise Filter Capacitor-type noise filter exclusively designed for drive input. For both 200 V and 400 V classes, the noise filter can be used with a zero-phase reactor. Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals. [Okaya Electric Industries Co., Ltd.] | Model | Code No. | |-----------|----------| | 3XYG 1003 | C002889 | ### Connection Diagram #### Specifications | Rated | Capacitance | Operating | |---------|---|------------------| | Voltage | (3 devices each) | Temperature (°C) | | 440 V | X (Δ connection): 0.1 μ F±20 %
Y (λ connection): 0.003 μ F±20 % | -40 to +85 | Note: For use with 460 V and 480 V units, contact Yaskawa directly. ### Dimensions (mm) ### Braking Unit, Braking Resistor, Braking Resistor Unit Braking units and braking resistors are required to brake the drive. However, the braking unit for drives with catalog codes GA70 2004 through 2138 and GA70 4002 through 4168 is not required since these drives have built-in braking transistors. If the application requires a braking resistor or braking unit, choose from built-in and stand-alone types in accordance with motor capacity. When connecting a braking unit or a braking resistor unit with the catalog codes GA70 □ 2169, GA70 □ 2211, GA70 □ 4140, and GA70 □ 4168, a junction terminal is required. Yaskawa recommends Mibu Denki Industrial Co., Ltd.as a manufacturer of the junction terminal. Stand-alone c SN US (E RoHS compliant Braking Unit (CDBR-:::D) [CDBR series] Braking Resistor [ERF-150WJ series] Braking Resistor with Fuse [CF120-B579 series] Braking Resistor Unit [LKEB series] #### 200 V Class Footnotes are listed on page 53. | Max. | | GA700 | Braking U | nit | | | | | | | actor: 3% ED, 10 s max.)*1 | | | | | Braking Resistor Unit | | | | Mar. 90 | |------------|----------|----------------------------|-----------|----------|-----------|------------|------|---------|---------|--------------|----------------------------|------|--------------|--------------------|--------------|-----------------------|--------|---------|---------|-----------------------| | Applicable | | | Ŭ | '''' | | No F | use | | | | With | Fus | е | | (Dut | y Factor: 10% E | 0, 10 | s max | :.)*1 | Min.*2
Connectable | | Motor | ND/HD | Catalog Code | | | Model | Resistance | | | Braking | Model | Resistance | | | Braking | Model | Resistor | | | Braking | Resistance | | (kW) | | GA70A | CDBR- (| Qty. | ERF-150WJ | (Ω) | Qty. | Diagram | | CF120-B579 | (Ω) | Qty. | Diagram | Torque*3 | LKEB- | Specifications | Qty. | Diagram | | (Ω) | | | | | ii | | ililii | ` ' | · | | (%) | | | | - | (%) | | (per unit) | | _ | (%) | | | 0.4 | HD | 2004 | | L | 201 | 200 | 1 | Α | 220 | В | 200 | 1 | Α | 220 | 20P7 | 70 W 200 Ω | 1 | В | 220 | 48 | | 0.75 | ND
HD | 2004 | | | 201 | 200 | 1 | Α | 125 | В | 200 | 1 | Α | 125 | 20P7 | 70 W 200 Ω | 1 | В | 125 | 48 | | 1.1 | ND | 2006 | | | 201 | 200 | 1 | Α | 85 | В | 200 | 1 | Α | 85 | 20P7 | 70 W 200 Ω | 1 | В | 85 | 48 | | 1.1 | HD | 2008 | | | 101 | 100 | | ^ | 150 | С | 100 | 1 | ^ | 150 | 21P5 | 260 W 100 Ω | | | 150 | 40 | | 1.5 | ND | 2008 | | | 101 | 100 | 1 | Α | 125 | С | 100 | 1 | Α | 125 | 21P5 | 260 W 100 Ω | 1 | В | 125 | 48 | | | HD | 2010 | | | | | · | ,, | 0 | | | · | , , | .20 | | 200 11 100 22 | ı. | | .20 | | | 2.2 | ND | 2010 | | | 700 | 70 | 1 | Α | 120 | D | 70 | 1 | Α | 120 | 22P2 | 260 W 70 Ω | 1 | В | 120 | 48 | | | HD | 2012 | | <u> </u> | | | | | | | | | | | | | | | | 16 | | 3 | ND | 2012 | | | 620 | 62 | 1 | Α | 100 | Е | 62 | 1 | Α | 100 | 23P7 | 390 W 40 Ω | 1 | В | 150 | 16 | | | HD | 2018 | | H | | | | | | | | | | | | | | | | | | 3.7 | ND | 2018 | | | 620 | 62 | 1 | Α | 80 | E | 62 | 1 | Α | 80 | 23P7 | 390 W 40 Ω | 1 | В | 125 | 16 | | | HD | 2021 | | - | 000 | 00 | 0 | A */ | 110 | | 00 | | A*4 | 110 | | | | | | | | 5.5 | ND
HD | 2021 | Built-in | | 620 | 62 2 | | 2 A*4 | 110 | Е | 62 | 2 | A | 110 | 25P5 | 520 W 30 Ω | 1 | В | 115 | 16 | | | ND | 2030 | | H | | | | | | | | | | | | | | | | 16 | | 7.5 | HD | 2030 | | | | - | - | | | | - | - | | | 27P5 | 780 W 20 Ω | 1 | В | 125 | 9.6 | | | ND | 2042 | | - | | | | | | | | | | | | | 9.0 | | | | | 11 | HD | 2056 | | | | - | | | - | | | | 2011 | 2400 W 13.6 Ω | 1 | В | 125 | 9.6 | | | | | ND | 2056 | 1 | H | | | | | | | | | | | | | | | | | | 15 | HD | 2070 | 1 | | | _ | - | | | - | | | | 2015 | 3000 W 10 Ω | 1 | В | 125 | 9.6 | | | | ND | 2070 | | | | | | | | | | | | 0045 0000 W 40 O | | | | | | | | 18.5 | HD | 2082 | | | | - | _ | | | _ | | | | 2015 3000 W 10 Ω | 1 B | В | 100 | 9.6 | | | | | ND | 2082 | | ı | | | | | | | | | | | 2015 | 3000 W 10 Ω | | | 85 | 9.6 | | 22 | HD | 2110 | | | | _ | - | | | _ | | | | | 2022 | 4800W 6.8 Ω | 1 | В | 125 | 6.4 | | | ND | 2110 | ĺ | | | | | | | | | | | | 0000 | 4000 114 0 0 0 | , | | 00 | 0.4 | | 30 | HD | 2138 | 1 | | | _ | • | | | | _ | - | | | 2022 | 4800 W 6.8 Ω | 1 | В | 90 | 6.4 | | 0.7 | ND | 2138 | 1 | Т | | | | | | | | | | | 2022 | 4800 W 6.8 Ω | 1 | В | 70 | 6.4 | | 37 | HD | 2169*5 | 2037D | 1 | | _ | • | | | | _ | | | | 2015 | 3000 W 10 Ω | 2 | F | 100 | 5.0 | | 45 | ND | 2169*5 | 2037D | 1 | | | | | | | | | | | 2015 | 3000 W 10 Ω | 2 | F | 80 | 5.0 | | 45 | HD | 2211*5 | 2022D | 2 | | | | | | | | | | | 2022 | 4800 W
6.8 Ω | 2 | G | 120 | 6.4 | | 55 | ND
HD | 2211* ⁵
2257 | 2022D | 2 | - | | | | | - | - | | | 2022 | 4800 W 6.8 Ω | 2 | G
C | 100 | 6.4 | | | 75 | ND
HD | 2257
2313 | 2110D | 1 | - | | | | - | | | 2022 | 4800 W 6.8 Ω | 3 | D | 110 | 1.6 | | | | | 90 | ND
HD | 2313 | 2110D | 1 | - | | | | | - | | | 2022 | 4800 W 6.8 Ω | 4 | D | 120 | 1.6 | | | | 110 | ND
HD | 2360
2415 | 2110D | 1 | | - | | | | | - | - | | | 2018 | 4800 W 8 Ω | 5 | D | 100 | 1.6 | Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 57. - Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR-□B, CDBR-□C). Refer to TOBP C720600 01 1000-Series Option CDBR, LKEB Installation Manual for more details. - Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 57 for details. - If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced. - 5. See the connection diagram on page 54. | Max. | | GA700 | Braking | Unit | | | | | Duty Fa | actor: 3% ED, 10 s max.)*1 | | | | Braking Resistor Unit | | | | Min.*2 | | | |---------------|----------|--|----------------|------|--------------------|---|------|---------|----------------------------|----------------------------|-----------------------|------|--------------|------------------------------------|----------------|--|------------|--------------|----------------------------|-----------------------| | Applicable | | | | | | No F | use | | | With Fuse | | | | (Duty Factor: 10% ED, 10 s max.)*1 | | | | Connectable | | | | Motor
(kW) | ND/HD | Catalog Code
GA70A | Model
CDBR- | Qty. | Model
ERF-150WJ | Resistance (Ω) | Qty. | Diagram | Braking
Torque*3
(%) | Model
CF120-B579 | Resistance (Ω) | Qty. | Diagram | Braking
Torque*3
(%) | Model
LKEB- | Resistor
Specifications
(per unit) | Qty. | Diagram | Braking
Torque*3
(%) | Resistance (Ω) | | 0.4 | HD | 4002 | | | 751 | 750 | 1 | Α | 230 | F | 750 | 1 | Α | 230 | 40P7 | 70 W 750 Ω | 1 | В | 230 | 165 | | 0.75 | ND
HD | 4002
4004 | | | 751 | 750 | 1 | А | 130 | F | 750 | 1 | А | 130 | 40P7 | 70 W 750 Ω | 1 | В | 130 | 165 | | 1.5 | ND
HD | 4004
4005 | | | 401 | 400 | 1 | А | 125 | G | 400 | 1 | А | 125 | 41P5 | 260 W 400 Ω | 1 | В | 125 | 165
110 | | 2.2 | ND
HD | 4005
4007 | | | 301 | 300 | 1 | А | 115 | Н | 300 | 1 | А | 115 | 42P2 | 260 W 250 Ω | 1 | В | 135 | 110 | | 3 | ND
HD | 4007
4009 | | | 201 | 200 | 1 | А | 125 | J | 250 | 1 | А | 100 | 42P2
43P7 | 260 W 250 Ω
390 W 150 Ω | 1 | В | 100
150 | 110
55 | | 3.7 | ND
HD | 4009
4012 | | | 201 | 200 | 1 | Α | 105 | J | 250 | 1 | А | 83 | 43P7 | 390W 150 Ω | 1 | В | 135 | 55 | | 5.5 | ND
HD | 4012
4018 | | | 201 | 1 200 2 A*4 135 J 250 2 A*4 105 | | 45P5 | 520 W 100 Ω | 1 | В | 135 | 55
32 | | | | | | | | | 7.5 | ND
HD | 4018
4023 | | | | - | - | | | | - | | | | | 780 W 75 Ω | 1 | В | 130 | 32 | | 11 | ND
HD | 4023
4031 | Duille | | | - | - | | | | - | - | | | 4011 | 1040 W 50 Ω | 1 | В | 135 | 32
20 | | 15 | ND
HD | 4031
4038 | Built- | -III | | - | - | | | | - | - | | | 4015 | 1560 W 40 Ω | 1 | В | 125 | 20 | | 18.5 | ND
HD | 4038
4044 | | | | - | - | | | | - | - | | | 4018 | 4800 W 32 Ω | 1 | В | 125 | 20
19.2 | | 22 | ND
HD | 4044
4060 | | | | _ | - | | | | - | - | | | 4022 | 4800 W 27.2 Ω | 1 | В | 125 | 19.2 | | 30 | ND
HD | 4060
4075 | | | | - | - | | | | - | | | | | 6000 W 20 Ω | 1 | В | 125 | 19.2 | | 37 | ND
HD | 4075
4089 | | | | | | | | | | | 4030
4037 | 6000 W 20 Ω
9600 W 16 Ω | 1 | В | 100
125 | 19.2
10.6 | | | | 45 | ND
HD | 4089
4103 | | | | - | - | | | _ | | | 4045 | 9600 W 13.6 Ω | 1 | В | 125 | 10.6
8.7 | | | | 55 | ND
HD | 4103
4140*5 | | | | _ | - | | | - | | | 4045
4030 | 9600 W 13.6 Ω
6000 W 20 Ω | _ | B*4
H | 100
135 | 8.7
7.2 | | | | 75 | ND
HD | 4140* ⁵
4168* ⁵ | | | | _ | - | | | _ | | | 4030
4045 | 6000 W 20 Ω
9600 W 13.6 Ω | 2 | H*4 | 100
145 | 7.2
5.2 | | | | 90 | ND
HD | 4168*5
4208 | 4045D | 2 | | _ | - | | | | _ | - | | | 4045 | 9600 W 13.6 Ω | 2 | H*4
C | 100 | 5.2
12.8 | | 110 | ND
HD | 4208
4250 | 4220D | 1 | | | - | | | | _ | - | | | 4030 | 6000 W 20 Ω | 3 | D | 100 | 3.2 | | 132 | ND
HD | 4250
4296 | 4220D | 1 | | - | - | | | | - | - | | | 4045 | 9600 W 13.6 Ω | 4 | D | 140 | 3.2 | | 160 | ND
HD | 4296
4371 | 4220D | 1 | | | - | | | | _ | - | | | 4045 | 9600 W 13.6 Ω | 4 | D | 140 | 3.2 | | 200 | ND
HD | 4371
4389 | 4220D | 1 | - | | | | | - | - | | | 4045 | 9600 W 13.6 Ω | 4 | D | 120 | 3.2 | | | 220 | ND
HD | 4389
4453 | 4220D | 1 | - | | | | | - | | | 4037 | 9600 W 16 Ω | 5 | D | 110 | 3.2 | | | | 250 | ND
HD | 4453
4568 | 4220D | 1 | - | | | | | _ | | | 4037 | 9600 W 16 Ω | 5 | D | 90 | 3.2 | | | | 315 | ND
HD | 4568
4675 | 4220D | 2 | - | | | | | - | | | 4045 | 9600 W 13.6 Ω | 6 | Е | 100 | 3.2 | | | | 355 | ND | 4675 | 4220D | 2 | | - | | | | | - | - | | | 4045 | 9600 W 13.6 Ω | 8 | Е | 120 | 3.2 | - *1: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor. - *2: Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to - generate enough braking torque to stop the motor. *3: Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. If the braking torque exceeds the value shown in the table, the capacity of the braking resistor must be increased. - *4: When using multiple braking resistors or braking resistor units, connect them in parallel. - **★5**: When connecting a braking unit or a braking resistor unit with the catalog codes GA70□2169, GA70□211, GA70□4140, and GA70□4168, a junction - terminal is required. For details, see the connection diagram on the next page. Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 57. 2. Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR-□B, CDBR-□C). Refer to TOBP C720600 01 1000-Series Option CDBR, LKEB Installation Manual for more details. - 3. Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 57 for details. - 4. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced. - 5. See the connection diagram on page 54. Global Service - *1: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using braking resistors, and set a multi-function input to "Braking Resistor Fault" (H1-[]] = D). Wiring sequence should shut off power to the drive when a fault output is triggered. CF120-B579 series does not need to be wired an external sequence. - *2: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time. - *3: 200 V class drives do not require a control circuit transformer. - *4: Set L8-55 to 0 to disable the protection function for the built-in braking transistor when using a regenerative unit or another type of braking option in lieu of the built-in braking transistor. If the protection function is enabled under these conditions, it may cause a braking resistor fault (rF). When connecting a separately-installed type braking resistor unit (model - CDBR) to drives with a built-in braking transistor (catalog codes GA70 ☐ 2004 to 2138, and GA70 ☐ 4002 to 4168), connect the B1 terminal of the drive to the positive terminal of the braking resistor unit and connect the negative terminal of the drive to the negative terminal of the braking resistor unit. The B2 terminal is not used in this case. - \$5: Be sure to protect non-Yaskawa braking resistors by thermal overload relay. - *6: When using more than one braking unit connected in parallel, set one of the braking units as the master, and set the others as slaves. *7: Connect fault relay output to multi-function digital input S::(External Fault). - *7: Connect fault relay output to multi-function digital input S::(External Fault). Connect the CDBR transistor short-circuit detection output to disconnect main input power to the drive. - *8: Connect directly to the drive terminal or install a terminal block. - ★9: Contact your Yaskawa or nearest sales representative for a replacement manual when connecting braking units CDBR-[]B, CDBR-[]C, and CDBR-[]D in parallel. ### Model, Code No. Braking Unit 200 V Class | Model
CDBR-□□□□□ | Protection
Design | Code No. | | | | | |---------------------|----------------------|-------------|--|--|--|--| | 2022D | IP20 | 100-091-707 | | | | | | 2022D | UL Type 1 | 100-091-754 | | | | | | 2037D | IP20 | 100-091-712 | | | | | | 20370 | UL Type 1 | 100-091-759 | | | | | | 2110D | IP00 | 100-091-524 | | | | | | 21100 | UL Type 1 | 100-091-530 | | | | | | | | | | | | | #### 400 V Class | 4045D | 100-091-722 | | | | |-------|-------------|--|--|--| | 4043D | 100-091-769 | | | | | 4000D | 100-091-526 | | | | | 42200 | 100-091-532 | | | | | 4220D | 100-09 | | | | #### **Heat Loss** | Model CDBR-::::: | Heat Loss (W) | |------------------|---------------| | 2022D | 27 | | 2037D | 38 | | 2110D | 152 | | 4045D | 36 | | 4220D | 152 | ### Dimensions (mm) Braking Unit Open
Chassis [IP20] CDBR-2022D, -2037D, -4045D Weight: 2 kg Enclosure Wall-Mounted [UL Type 1] CDBR-2022D, -2037D, -4045D Weight: 2.3 kg #### Open Chassis [IP00] CDBR-2110D, -4220D CDBR-2110D, -4220D ### Braking Resistor An optional separate attachment is need to install the braking resistor to the drive. Refer to the Attachment for Braking Resistor on page 57. #### CF120-B579 series ### Braking Resistor Unit (stand-alone) Figure 1 | Applicable | Braking Resistor | | | Dime | ensio | Wojaht | Allowable Average | | | |------------------|---|--------|-----|------|-------|--------|-------------------|----------------|------------------------| | Voltage
Class | Unit Model LKEB-:::::::::::::::::::::::::::::::::::: | Figure | Α | В | С | D | MTG
Screw | Weight
(kg) | Power Consumption (VV) | | | 20P7 | 1 | 105 | 275 | 50 | 260 | M5×3 | 3.0 | 30 | | | 21P5 | | | | | | | 4.5 | 60 | | | 22P2 | 1 | 130 | 350 | 75 | 335 | M5×4 | 4.5 | 89 | | | 23P7 | | | | | | | 5.0 | 150 | | 200 V | 25P5 | 1 25 | 250 | 350 | 200 | 335 | M6×4 | 7.5 | 220 | | Class | 27P5 | ľ | 230 | 330 | 200 | 333 | IVIO A4 | 8.5 | 300 | | | 2011 | | 266 | | 246 | | | 10 | 440 | | | 2015 | 2 | 356 | 543 | 336 | 340 | M8×4 | 15 | 600 | | | 2018 | | 446 | 343 | 426 | 340 | IVIO A | 19 | 740 | | | 2022 | | 440 | | 420 | | | 19 | 880 | | Applicable | Braking Resistor | | | Dillik | 511310 | | Allowable Average | | | |------------------|---|--------|-----|--------|--------|-----|-------------------|----------------|------------------------| | Voltage
Class | Unit Model LKEB-:::::::::::::::::::::::::::::::::::: | Figure | Α | В | С | D | MTG
Screw | Weight
(kg) | Power Consumption (VV) | | | 40P7 | 1 | 105 | 275 | 50 | 260 | M5×3 | 3.0 | 30 | | | 41P5 | | | | | | | 4.5 | 60 | | | 42P2 | 1 | 130 | 350 | 75 | 335 | M5×4 | 4.5 | 89 | | | 43P7 | | | | | | | 5.0 | 150 | | | 45P5 | 1 | 250 | 350 | 200 | 335 | M6×4 | 7.5 | 220 | | 400.14 | 47P5 | ' | 250 | 330 | 200 | 333 | IVIO A | 8.5 | 300 | | 400 V
Class | 4011 | 2 | 350 | 412 | 330 | 225 | M6×4 | 16 | 440 | | Oldoo | 4015 | 4 | | 412 | 330 | 323 | IVIO ^4 | 18 | 600 | | | 4018 | 2 | 446 | 543 | 400 | 340 | M8×4 | 19 | 740 | | | 4022 | 4 | 440 | 343 | 420 | 540 | 1010 ^ 4 | 19 | 880 | | | 4030 | | 356 | | 336 | | | 25 | 1200 | | | 4037 | 2 | 116 | 956 | 426 | 740 | M8×4 | 33 | 1500 | | | 4045 | | 446 | | 426 | | | 33 | 1800 | ### Attachment for Braking Resistor | Model | Code No. | |-----------------|-------------| | 900-192-126-001 | 100-202-333 | ### Braking Unit External Heatsink Attachment Use the external heatsink attachment for installation with the heatsink outside the enclosure. | Attachment | Model
CDBR-[[]] | Model
(Code No.) | |------------|--------------------|---------------------| | | 2022D | | | | 2037D | EZZ021711A | | | 4030D | (100-066-355) | | 9,9, | 4045D | | ### Dimensions (mm) ### Braking Unit Panel Cutout Dimensions | Model | Modification | | | | Dime | nsions | (mm) | | | | |-------|--------------|-----|-----|-----|------|--------|------|-------|-----|----| | CDBR- | Figure | W* | H* | W1 | W2 | W3 | H1 | H2 | НЗ | d1 | | 2022D | 1 | 172 | 226 | 108 | 118 | 84 | 166 | 172 | 152 | M4 | | 2037D | 1 | 172 | 226 | 108 | 118 | 84 | 166 | 172 | 152 | M4 | | 2110D | 2 | 175 | 294 | 110 | 159 | _ | 279 | 257.8 | _ | M5 | | 4045D | 1 | 172 | 226 | 108 | 118 | 84 | 166 | 172 | 152 | M4 | | 4220D | 2 | 175 | 294 | 110 | 159 | _ | 279 | 257.8 | _ | M5 | $[\]boldsymbol{\divideontimes}$ The following W, H information is the size when in installing the gasket. ### Bluetooth LCD Keypad A Bluetooth communications interface is built into the LCD keypad. The drive can be connected to DriveWizard Mobile through a wireless connection. | Specification | Model | Code No. | |----------------|-----------------|-------------| | Standard | JVOP-KPLCC04AAA | 100-213-745 | | Humidity, dust | JVOP-KPLCC04MAA | 100-213-746 | Note: 1. Available in the GA700 software versions: 1016 and later. - 2. Certified international standards: CE, FCC, IC (Industry Canada), KC Korea, MIC Japan - 3. This keypad is equipped with a wireless device. The usage of wireless devices may be restricted in accordance with the Radio Law in each country. Check relevant laws and regulations in each country before using the product. #### (mm) **Dimensions** Mtg. hole, M3 × 2 screw (depth 6) (for mounting on control panel) ### LED Keypad The LED keypad offers a five-digit LED display. Shipment of LED keypad as standard prepared is available. Contact Yaskawa. | Specification | Model | Code No. | |----------------|-----------------|-------------| | Standard | JVOP-KPLEA04AAA | 100-206-377 | | Humidity, dust | JVOP-KPLEA04MAA | 100-206-378 | LED keypad #### Dimensions (mm) Mtg. hole, M3 \times 2 screw (depth 6) (for mounting on control panel) ### Keypad Extension Cable Enables remote operation. | Model | Code No. | |-------------|----------| | WV001 (1 m) | WV001 | | WV003 (3 m) | WV003 | Note: Never use this cable for connecting the drive to a PC. Doing so may damage the LCD keypad (standard) (JVOP-KPLCA04□AA) keypad extension cable Bluetooth LCD Keypad ### Keypad Mounting Bracket This bracket is required to mount the LCD, Bluetooth LCD Keypad, or LED keypad on the control panel. | Item | Model | Code No. | Installation | Notes | |-------------------------------|-----------------|-------------|---|--| | Installation
Support Set A | 900-192-933-001 | 100-203-008 | M4 screws: 10 mm depth Phillips truss head screws (4) (for panel thickness of 1 to 1.6 mm) M3 screws: 6 mm depth Phillips recessed pan head machine screws (2) | For use with holes through the panel | | Installation
Support Set B | 900-192-933-002 | 100-203-009 | | For use with panel mounted threaded studs Note: If there are weld studs on the interior of the control panel, use the installation support set B (nut clamp). | ### PC Cable Cable to connect the drive to a PC with DriveWizard or DriveWorksEZ installed. Use a commercially available USB 2.0 cable (A-miniB connectors, max. 3 m). ### Connection Note: DriveWizard is a PC software package for managing parameters and functions in Yaskawa drives. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. ### Frequency Meter/Current Meter | Model | Code No. | |------------------------------------|------------| | Scale-75 Hz full-scale: DCF-6A | FM000065 | | Scale-60/120 Hz full-scale: DCF-6A | FM000085 | | Scale-5 A full-scale: DCF-6A | DCF-6A-5A | | Scale-10 A full-scale: DCF-6A | DCF-6A-10A | | Scale-20 A full-scale: DCF-6A | DCF-6A-20A | | Scale-30 A full-scale: DCF-6A | DCF-6A-30A | | Scale-50 A full-scale: DCF-6A | DCF-6A-50A | Note: DCF-6A specifications are 3 V, 1 mA, and 3 $\mbox{k}\Omega$ inner impedance. Because the GA700 multifunction analog monitor output default setting is 0 to 10 V, set frequency meter adjusting potentiometer (20 k Ω) or parameter H4-02 (analog monitor output gain) within the range of 0 to 3 V. ### Dimensions (mm) ### Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer | Model | Code No. | |-----------------|----------| | RV30YN20S 2 kΩ | RH000739 | | RV30YN20S 20 kΩ | RH000850 | Dimensions (mm) Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer | Model | Code No. | |-------|-----------| | CM-3S | HLNZ-0036 | Dimensions (mm) ### Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer | Model | Code No. | |-------------|-------------| | NPJT41561-1 | NPJT41561-1 | Dimensions (mm) ### Output Voltage Meter | Model | Code No. | |--|------------| | Scale-300 V full-scale | VM000481 | | (Rectification Type Class 2.5: SCF-12NH) | VIVIUUU461 | | Scale-600 V full-scale | VM000502 | | (Rectification Type Class 2.5: SCF-12NH) | VIVI000302 | ### Dimensions (mm) ### Potential Transformer | Model | Code No. | |-------------------------------------|-------------| | 600 V meter for voltage transformer | 100-011-486 | | UPN-B 440/110 V (400/100 V) | 100-011-486 | Note: For use with a standard voltage regulator. A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (100-011-486), or a voltmeter that does not use a transformer and offers direct read out. ### Dimensions (mm) Weight: 2.2 kg ### **Application Notes** ### Application Notes #### Selection ■ Installing a Reactor An AC or DC reactor can be used for the following situations: - · when the power supply is 600 kVA or more. - to smooth peak current that results from switching a phase advance capacitor. - to improve the power supply power factor. The DC reactor is built in for models of catalog codes GA70□2110 and above, GA70□4060 and above. Use an AC reactor when also connecting a thyristor converter to the same power supply system, regardless of the conditions of the power supply. ### ■ Drive Capacity The rated output current of the drive output amps should be equal to or greater than the motor rated current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current. #### ■ Starting Torque The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity. #### ■
Emergency Stop When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to. ### Options The B1, B2, -, +1, +2 and +3 terminals are used to connect optional devices. Connect only GA700-compatible devices. ### ■ Repetitive Starting/Stopping Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 2 kHz carrier frequency and a 150% peak current. Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly. For cranes and other applications using the inching function in which the drives starts and stops the motor repeatedly, Yaskawa recommends the following steps to ensure torque levels: - Select a large enough drive so that peak current levels remain below 150%. - The drive should be one frame size larger than the motor. - As the carrier frequency of the drive is increased above the factory default setting, the drive's rated output current must be derated. Refer to the instruction manual of the drive for details on this function. #### Installation #### ■ Enclosure Panels Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details. #### ■ Installation Direction The drive should be installed upright as specified in the Although the drive can be installed on its side, an appropriate amount of airflow and current derating are required. #### ■ Installation of Bypass Circuit If the fuse blows or the circuit breaker (MCCB) trips, check the cable wiring and selection of peripheral devices and identify the cause. If the cause cannot be identified, do not turn ON the power supply or operate the device. Contact your Yaskawa representative. If a drive fails and the motor will be directly driven using a commercial power supply, install the bypass circuit shown in the diagram below. If this bypass circuit is not installed, remove the drive and then connect the motor to a commercial power supply. (In other words, after disconnecting the cables connected to the main circuit terminals, such as main circuit power supply input terminals R/L1, S/L2, and T/L3 and drive output terminals U/T1, V/T2, and W/T3, connect the motor to a commercial power supply.) #### Settings - Use V/f Control when running multiple induction motors at the same time. - If using Open Loop Vector Control or Closed Loop Vector Control for PM motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run. - Upper Limits Because the drive is capable of running the motor at up to 590 Hz, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz. Pay close attention as follows when using DriveWorksEZ. I/O terminal function of the drive will change with the function of the default terminal depending on the setting. Before test running the drive based on programs created by DriveWorksEZ, always check the I/O signal of the drive and the internal sequence. Failure to check may result in death or serious injury. ■ Pay attention to the following points when using the Virtual I/O function. This function virtually wires the I/O terminal of the drive internally. Consequently, the behavior of the drive may differ from its defaults, even if there is no wiring in the I/O terminal. Before conducting a test operation, always check the setting values for the parameter of the Virtual I/O function. Failure to check may result in death or serious injury. ### ■ DC Injection Braking Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long. ■ Acceleration/Deceleration Times Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration, increase the capacity of both the motor and the drive. For faster deceleration, use a braking resistor or a power regenerative unit. #### General Handling Screw Terminal Option Crimp terminal wiring is available as an option. Contact Yaskawa in advance for more information on installation options. ■ Cable Clamp Option An option for mounting a clamping device that fixes power cables to the bottom of the drive. Contact Yaskawa in advance for more information on installation options. ■ Electrical Shock Hazard Failure to comply may result in death or serious injury. Do not allow unqualified personnel to perform work on the drive. Installation, maintenance, inspection, and servicing must be performed only by authorized personnel familiar with installation, adjustment, and maintenance of AC drives. ### **Application Notes** #### ■ Wiring Check Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive. Retighten the screws for the wiring terminals periodically. #### European Terminal - · For European terminals, do not shake the wires excessively or pull on the wires too much. - When connecting uninsulated wire and when crimping wire to the solderless terminal, do not let the wire protrude past the conductor section. Pay close attention to this because it could cause a short circuit. Check for any unsuitable wire size connections. - · Righten at the specified torque. ### ■ European Terminal Wiring Work Heed the following points. Follow the procedure in the manual concerning all points except the following. - · Use the torque driver or a torque wrench and ratchet. The tip of a straight-edge screwdriver or a hex socket tool is required for wiring the European terminal. - Wiring tools can be purchased from Yaskawa. Contact Yaskawa. The torque wrench should be supplied by the customer. - To replace a previous model, the wires that are used may be partially out of connection range. Contact Yaskawa beforehand about the available wire gauges. - Wiring Using Closed-loop Crimp Terminals Wrench-type or closed-wrench type tools cannot be used with drives with catalog codes of GA70 2257 and above or 4208 and above. Make sure to always use socket-type tools. Use only sockets with a depth of 30 mm or more. Socket Dimensions (for crimp terminals) ### ■ Magnetic Contactor Installation Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive. ### ■ Keypad [microSD card] - The SD card supports microSD, and microSD HC with a capacity of up to 32 GB. - Plug in and remove the microSD card after turning off the power supply for the drive. Do not remove the microSD card or de-energize the keypad when accessing the microSD card. This may cause data loss and failure. - · If there are many files and folders on the SD card or if the free space on the microSD card is low, the SD card may not run properly. [Connection via USB] - · Use a miniUSB cable. The USB connection between the PC and keypad is not possible while the drive and keypad are connected. First remove the keypad from the drive and then connect with the PC. - While connected to the USB, it is not possible from a PC to access the files on a microSD card that is inserted. #### ■ Inspection and Maintenance After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock. The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down. ### ■ Wiring on UL- and cUL-certified drives When performing wiring work on UL/cUL-certified drives, wire the drives at their recommended tightening torques using UL/cUL-compliant wires. For drives that require connection with closed-loop crimp terminals, use closed-loop crimp terminals and perform closed-loop crimping work using the crimping tools specified by the terminal manufacturer. ### ■ Replacing an existing model - · Wires used in existing models may be out of connection range. Contact Yaskawa beforehand for the available wire gauges. - · If replacing an existing model with drives with catalog codes of GA70 2211 and lower or 4168 and lower, the wire connection method should be changed. Cut off the crimp
terminal and remove the covering to expose the wires. If an uninsulated wire is already Dimensions connected to it, check the condition of the tip of the wire. After peeling of the dressing as necessary, wire again. #### ■ Transporting the Drive Never steam clean the drive. During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals. #### Storage The drive contains electrolytic capacitors and fine electronic components that undergo chemical changes. Observe the following precautions to help maintain the expected performance life and reliability during long-term storage. #### ■ Storage Location - Temperature and humidity Storage temperatures between -20 to +70°C are allowed when storing the drive for approximately one month. During transport, store and pack the drive so that it is isolated from as much vibration and shock as possible. Store the drive in a location with a relative humidity of 95% or less. Do not store the drive in direct sunlight or where condensation or ice will form. - Dust and oil mist Do not store the drive in dusty locations or locations that are susceptible to oil mist, such as the site of a cement factory or cotton mill. - Corrosive gas Do not store the drive in an area that may contain corrosive gas or in a location like a chemical plant, refinery, or sewage facility. - · Salt-air damage Do not store the drive in locations that are subject to salt damage, such as near the ocean, and salt damage-designated zones, in particular. Do not store the drive in adverse environments. Store all drives in storage rooms that are not subjected to adverse environmental elements. ### ■ Periodic Power Application Try to apply power to the drive once per year for at least 30 minutes to prevent the capacitors from deteriorating. When applying power after power has not been applied for more than two years, Yaskawa recommends using a variable power source and gradually increasing the power over a period of 2 to 3 minutes. Apply power for at least 1 hour with no load to age the main circuit electrolytic capacitor. Wire the drive normally and check for drive faults, overcurrents, motor vibration, speed fluctuations, and other abnormalities during operation after performing the above procedure. #### ■ Environmental Specifications The drive must not be used in the above mentioned environments. However, if it is difficult to avoid running the drive in these environments, Yaskawa offers special drives that are resistant to moisture, gas, vibrations, and salt. Contact Yaskawa for details. Be aware that drives with these specifications do not guarantee complete protection for the environmental conditions indicated. ■ Contact Yaskawa when running an isolation test with a drive. ### Peripheral Devices - Installing a Ground Fault Interrupter or an MCCB - Be sure to install an MCCB or an ELCB that is recommended by Yaskawa at the power supply side of the drive to protect internal circuitry. - · The type of MCCB is selected depending on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. If you do not use a recommended ELCB, use one fitted for harmonic suppression measures and designed specifically for drives. A malfunction may occur due to high-frequency leakage current, so the rated current of the ELCB must be 30 mA or higher per drive unit. If a malfunction occurs in an ELCB without any countermeasures, reduce the carrier frequency of the drive, replace the ELCB with one that has countermeasures against high frequency, or use an ELCB which has a rated current of 200 mA or higher per drive unit. Select an MCCB or an ELCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ELCB or MCCB in order to handle the short-circuit current level. ### **Application Notes** ■ Magnetic Contactor for Input Power Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered. Even though an MC is designed to switch to a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the LCD keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device. #### Magnetic Contactor for Motor As a general principle, the user should avoid opening and closing the magnetic contactor during run when the contactor is installed between the motor and the drive. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor. Use an MC with delayed release if momentary power loss is a concern. ■ Motor Thermal Over Load Relay Installation Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multi-pole motor or some other type of nonstandard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter (L1-01 = 0), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate. When long motor cables and high carrier frequency are used, nuisance tripping of the thermal relay may occur due to increased leakage current. Therefore, reduce the carrier frequency or increase the tripping level of the thermal overload relay. #### ■ Improving the Power Factor Install a DC reactor, AC reactor, or Power Regenerative Converter D1000 to the drive input side to improve the power factor. The DC reactor is built in for models of catalog codes GA70 2110 and above, GA70 4060 and above. Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because high-frequency contents contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent. #### ■ Radio Frequency Interference Drive output contains high-frequency contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor. #### ■ Wire Gauges and Wiring Distance Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used. The LCD keypad requires an extensional cable for remote operation. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m, and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield. #### ■ Counteracting Noise Because GA700 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following points in mind when considering how to reduce motor noise: - · Lowering the carrier frequency (C6-02) minimizes the effects of noise. - · A line noise filter can reduce the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 38. - Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise from the drive power lines. <Provided by JEMA> ### ■ Leakage Current High-frequency leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current. | | Problem | Solution | |--|---|--| | Ground
Leakage
Current | MCCB is mistakenly triggered | Lower the carrier frequency set to
parameter C6-02. Try using a component designed to
minimize harmonic distortion for
the MCCB such as the NV series
by Mitsubishi. | | Current
Leakage
Between
Lines | Thermal relay connected
to the external terminals
is mistakenly triggered
by harmonics in the
leakage current | Lower the carrier frequency set to
parameter C6-02. Use the drive's built-in thermal
motor protection function. | The following table shows the guidelines for the set value of the carrier frequency relative to
the wiring distance between the drive and the motor when using V/f control. | Wir | ing Distance* | 50 m or less | 100 m or less | 100 m or more | |---------|---------------------|------------------|-----------------|-----------------| | | C6-02: | 1 to A | 1, 2, 7 to A | 1, 7 to A | | Carrier | Frequency Selection | (15 kHz or less) | (5 kHz or less) | (2 kHz or less) | *: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor. When the wiring distance exceeds 100 m, use the drive observing the following conditions. - · Select V/f control mode (A1-02=0) - · To start a coasting motor - a) Use the current detection type (b3-24=0) when using the speed search function, or - b) Set the DC injection braking time at start (b2-03=0.01 to 10.00 sec) to stop a coasting motor and restart it. More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m. ### Notes on Motor Operation ### ■ Motor Bearing Life In applications involving constant speed over long periods, such as fans, pumps, extruders, and textile machinery, the life of the motor bearing may be shortened. This is called bearing electrolytic corrosion. The installation of a zero-phase reactor between the drive and motor, and the utilization of a motor with insulated bearings are effective countermeasures. Details can be found in the technical documentation. Contact your Yaskawa or nearest sales representative for more information. ### Using a Standard Motor ### ■ Low Speed Range There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be reduced Allowable Load Characteristic for a Yaskawa Motor accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds. ### **Application Notes** Insulation Tolerance Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances. Use a drive motor that has been equipped with isolation countermeasures. ■ High Speed Operation Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation. ■ Torque Characteristics Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application. ■ Vibration and Shock The motor may generate vibrations in the following circumstances. (1) Resonance Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance. - (2) Any imperfection on a rotating body increases vibration with speed. Caution should be taken when operating above the motor rated speed. - (3) Subsynchronous Resonance Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft. Yaskawa recommends using Closed Loop Vector Control for such applications. - Audible Noise Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed (i.e., above 60 Hz), however, can create unpleasant motor noise. ### Using a Highly Efficient Motor ■IE3 Motor The IE3 motor has superior features compared to the standard IE1 motors. Contact Yaskawa for technical documents. Refer to "Using a Synchronous Motor" for more information on highly efficient motor using synchronous motors. ### Using a Synchronous Motor - If using a motor other than the Yaskawa PM motor, contact your Yaskawa or nearest sales reprsentative. - If the motor must be run using commercial power supply, use an IM motor. - A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups. - When starting in Open Loop Vector Control for PM, the half rotation angle (electrical angle) of the motor may rotate reverse. - The starting torque varies depending on the control mode and motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range. To use the device beyond these ranges, contact a Yaskawa representative or salesperson. - Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed in Open Loop Vector Control for PM. - In Open Loop Vector Control for PM, the allowable load inertia moment is 50 times less than the motor inertia moment. Use Closed Loop Vector Control for PM for applications exceeding this value. - When using a holding brake in Open Loop Vector Control for PM, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Conveyor, transport, and hoist applications using a holding brake should run an IPM motor in Closed Loop Vector Control for PM. Do not use this for conveyor machines and gravity load applications such as elevators in particular. - In Open Loop Vector Control, use the Short Circuit Braking function to stop the motor so that the motor coasting at a speed of at least 200 Hz can be started. A specialized braking resistor is required to use the Short Circuit Braking function. Contact a Yaskawa Global Servic representative or salesperson for more information. Speed Search can be used to restart a coasting motor rotating slower than 200 Hz. If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking function and then restarted. - *: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor. - EZ Open Loop Vector Control is also able to drive SynRM (synchronous reluctance motor). Contact Yaskawa or your nearest sales representative for details. - If PG fails using a PM motor with PG and is replaced, maintain the state where the motor can be rotated and perform Z Pulse Offset Tuning (Rotational Auto-Tuning) and PM Rotational Auto-Tuning. - If oC (Overcurrent), STPo (Pull-Out Detection) and LSo (LSo Fault) occur when restarting the motor, use search retry and Short Circuit Braking when starting the motor, and adjust accordingly. ### Applications with Specialized Motors ■ Multi-Pole Motor Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop. Submersible Motor Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable. ■ Explosion-Proof Motor Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas. An explosion-proof pulse generators (PG) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring. #### Geared Motor Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require frequencies in excess of the rated frequency. ### ■ Single-Phase Motor Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes high-frequency current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. GA700 is for use only with 3-phase motors. ### ■ Motor with Brake Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds. ### **Power Driven Machinery** Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Note also that operation at a frequency exceeding the rated frequency can cause problems with the power transmission mechanism, including audible noise, performance life, and durability due to centrifugal force. # Global Service Network | Region | Service Area | Service Location | Service Agency | Telephone/Fax | | |------------------|-------------------------|--|---|-----------------|--------------------------------------| | North
America | U.S.A. | Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina | 1)YASKAWA AMERICA INC. | Headquarters | | | | Mexico | Mexico City | PILLAR MEXICANA. S.A. DE
C.V. | ☎
FAX | +52-555-660-5553
+52-555-651-5573 | | South
America | Brazil | São Paulo | €YASKAWA ELÉTRICO DO BRASIL LTDA. | ☎
FAX | +55-11-3585-1100
+55-11-3585-1187 | | | Colombia | Bogota | OVARIADORES LTD.A. | | +57-1-795-8250 | | Europe | Europe,
South Africa | Frankfurt | 9YASKAWA EUROPE GmbH | ☎
FAX | +49-6196-569-300
+49-6196-569-398 | | Asia | Japan | Tokyo,
offices nationwide | SYASKAWA ELECTRIC CORPORATION (Manufacturing, sales) | ☎
FAX | +81-3-5402-4502
+81-3-5402-4580 | | | | | YASKAWA ELECTRIC ENGINEERING CORPORATION
(After-sales service) | ☎
FAX | +81-3-4533-0928
+81-4-2931-1830 | | | South Korea | Seoul | 3 YASKAWA ELECTRIC KOREA CORPORATION (Sales) | ☎
FAX | +82-2-784-7844
+82-2-784-8495 | | | | | 9YASKAWA ENGINEERING KOREA CORPORATION (After-sales service) | ☎
FAX | +82-2-3775-0337
+82-2-3775-0338 | | | China | Beijing, Guangzhou,
Shanghai | ●YASKAWA ELECTRIC (CHINA) CO., LTD. | ☆
FAX | +86-21-5385-2200
+86-21-5385-3299 | | | Taiwan | Taipei | SYASKAWA ELECTRIC TAIWAN CORPORATION | ☎
FAX | +886-2-8913-1333
+886-2-8913-1513 | | | Singapore | Singapore | ØYASKAWA ELECTRIC (SINGAPORE) PTE. LTD. | ☎
FAX | +65-6282-3003
+65-6289-3003 | | | Thailand | Bangkok | ®YASKAWA ELECTRIC (THAILAND) CO., LTD. | ₽ FAX | +66-2-017-0099
+66-2-017-0090 | | | Vietnam | Ho Chi Minh | | ₹
FAX | +84-8-3822-8680
+84-8-3822-8780 | | | | Hanoi | OYASKAWA ELECTRIC VIETNAM CO., LTD. | | +84-4-3634-3953
+84-4-3654-3954 | | | India | Bangalore | ®YASKAWA INDIA PRIVATE LIMITED | ☎
FAX | +91-80-4244-1900
+91-80-4244-1901 | | | Indonesia | Jakarta | ®PT. YASKAWA ELECTRIC INDONESIA | ☎
FAX | +62-21-2982-6470
+62-21-2982-6471 | | Oceania | Australia | | Contact to service agency in U.S.A. (1). | | | #### DRIVE CENTER (INVERTER PLANT) 2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone +81-930-25-2548 Fax +81-930-25-3431 http://www.yaskawa.co.jp #### YASKAWA ELECTRIC CORPORATION New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone +81-3-5402-4502 Fax +81-3-5402-4580 http://www.yaskawa.co.jp YASKAWA AMERICA, INC. 2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax +1-847-887-7310 http://www.yaskawa.com YASKAWA ELÉTRICO DO BRASIL LTDA. 777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone +55-11-3585-1100 Fax +55-11-3585-1187 http://www.yaskawa.com.br #### YASKAWA EUROPE GmbH Hauptstraβe 185, 65760 Eschborn, Germany Phone +49-6196-569-300 Fax +49-6196-569-398 http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com #### YASKAWA ELECTRIC KOREA CORPORATION 35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea Phone +82-2-784-7844 Fax +82-2-784-8495 http://www.yaskawa.co.kr #### YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. 151, Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone +65-6282-3003 Fax +65-6289-3003 http://www.yaskawa.com.sg #### YASKAWA ELECTRIC (THAILAND) CO., LTD. 59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand Phone +66-2-017-0099 Fax +66-2-017-0799 http://www.yaskawa.co.th #### PT. YASKAWA ELECTRIC INDONESIA Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone +62-21-2982-6470 Fax +62-21-2982-6471 http://www.yaskawa.co.id/ YASKAWA ELETRIC VIETNAM CO., LTD HO CHI MINH OFFICE Suite 1904A, 19th Floor Centec Tower, 72-74 Nguyen Thi Minh Khai Street, Ward 6, District 3, Ho Chi Minh City, Vietnam Phone +84-8-3822-8680 Fax +84-8-3822-8780 ### YASKAWA ELETRIC VIETNAM CO., LTD HA NOI OFFICE 2nd Floor, Somerset Hoa Binh Hanoi, No. 106, Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam Phone +84-4-3634-3953 Fax +84-4-3654-3954 ### YASKAWA ELECTRIC (CHINA) CO., LTD. 22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China Phone +86-21-5385-2200 Fax +86-21-5385-3299 http://www.vaskawa.com.cn ### YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone +86-10-8518-4086 Fax +86-10-8518-4082 ### YASKAWA ELECTRIC TAIWAN CORPORATION 12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 http://www.yaskawa.com.tw #### YASKAWA INDIA PRIVATE LIMITED #17/A, Electronics City, Hosur Road, Bangalore, 560 100 (Karnataka), India Phone +91-80-4244-1900 Fax +91-80-4244-1901 http://www.vaskawaindia.in YASKAWA ELECTRIC CORPORATION In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements © 2016 YASKAWA ELECTRIC CORPORATION